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ABSTRACT

The surface area to mass ratio or specific surface area (SSA) is an often neglected characteristic of
the snowpack that varies substantially with time, and with the shape of the individuat snow crystal for
fresh snow. The SSA for the dendritic shape of snow crystals was computed using a series of images
presented in Bentley and Humphries (1931). The specific images were dendritic crystals (P1d, Ple,
P1f) and crystals that take a partial dendritic form and have ends or extensions (P2a, P2b, P2d, P2e,
P2f, P2g) according to the Magono and Lee {(1966) snow crystal classification. Image analysis using
known geometric relationships between length and width and particle size distributions examined the
spatial properties of 50 sample snow crystals. Probability distribution functions were derived for SSA
and these compared well with measured and other computed estimates of fresh snow SSA. For the non-
rimed condition, the average SSA was 0.182 m%g with a range from 0.09 to 0.33 m*/g. The presence
of rime is discussed. Depending on the shape of the rime particles and the degree of surface coverage,
the SSA can be doubled (20% coverage for needle or plate rime), Fractal analysis was performed to
determine various geometric relationships that characterize the dendritic form of snow crystal.

Key words: snow crystals, specific surface area, dendrites, Bentley images, fractal analysis

INTRODUCTION

Individual snow crystals are intricately shaped ice particles that have a variety of different forms.
The definition of the shape of a snow crystal has been pondered for centuries. For example, in 1611
Kepler wrote an inquiry into the formation of snow crystals entitled On a Six-Cornered Snowflake.
William A. Bentley helped capture the shape of planar and dendritic snow crystals by photographing
more than 2400 crystals (see Bentley and Humphries, 1931). The shape and history of falling snow
crystals is important to assess the metamorphosis and evolution of an accumulating snowpack layer,
and to assess the potential atmospheric scavenging that can occur during descent. At present, few
methods exist to estimate the shape of snow crystals.

Various investigations have examined the surface area of ice crystals, particularly for the adsorption
of nitrogen using the BET method at low temperatures of approximately -195°C (eg. Adamson and
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Dormant, 1966; Ghormley, 1967, resulting in estimates of ice surface areas from 200 to 500 m g,
However few of these experiments used actual snow at crystal formation temperatures, i.¢., -20°C or
warmer, Adamson and Dormant (1966) measured the specific surface area (SSA) of two falling snow
samples to be 0.2 and 0.4 m¥/g, although they considered these to be very low, due possibly to the
adsorption of atmospheric impurities. The use of BET nitrogen adsorption specifically to measure the
surface area of fresh snow by Hoff er al. (1998) yielded a snow SSA range from 0.06 to 0.37 mY/g.
However, Hoff et al. (1998) noted that the primary limitation was that the lower limit of SSA

quantification for the BET nitrogen adsorption technique was similar to the SSA of snow. Hoff et al.
(1998) also summarizes various results of using light and scanning electron microscopes to view snow
crystals and estimated a snow SSA range from 0.05 t0 0.5 m */g, with a likely maximum of 1.0 m%g.

Using sieve analysis on cold samples (-20 °C) and assumptions about the shape of snow grains
sampled, Granberg (1985) estimated the grain size and surface area. The surface area varied from
0.006 m¥g at the bottom of a 50 to 100 cm deep snowpack to 0.020 m*g near the snowpack surface.
While these values are an order of magnitude less than other measurements of surface area, it was
acknowledged that the assumption of well-rounded snow grain shape yielded a surface area that could
have been many times less than that of fresh snow {Granberg, 1985).

Hogan (1994} computed a cross-sectional or projected area ranging from 0.15 to 0.22 m¥g for3.5
to 1.0 mm diameter Ple crystals, from 0.081 t0 0.117 m %Jg for 1.0 to 0.6 mm diameter P2a crystals,
from 0.068 to 0.096 m?¥g for 1.6 to 1.0 mm diameter P2e crystals, and from 0.075 to 0.107 m?/g for
1.8 to 0.9 mm diameter P2g crystals (classification according to Magono and Lee, 1996).

This paper quantifies the shape of dendritic snow crystals in terms of specific surface area by
applying geometric relationships between particle diameter and thickness (from Auer and Veal, 1970)
and distributions of diameter {from Grunow and Huefner, 1959) to various photographs taken by
Bentley (Bentley and Humphries, 1931). Since there are numerous forms of dendritic snow crystals,
crystals classified as dendritic and crystals with ends or extensions have been analyzed (P1d, Ple, P1f,
and P2a, P2b, P2d, P2e, P2f, P2g in Table 1, respectively). Throughout this paper, the Magono and
Lee (1966) classification is used instead of the Nakaya (1954) classification. While the emphasis is
presenting estimates of specific surface areas for dendritic crystals, various fractal properties
dimensions were computed to partially assist with the application of the image analysis method for
other crystal shapes.

PARTICLE RELATTONSHIPS AND S1ZE DISTRIBUTIONS

In general, snow crystals form as small hexagonal plates that can grow along the 6 prism faces (a-
axis) and/or perpendicularly along the 2 basal planes (c-axis). In summarizing previous work, Ono
(1970) described the change of the ice crystal form with temperature. Plates, stellars and dendrites
grow primarily along the a-axis, while columns and needle-shaped crystals grow primarily along the
c-axis {Fig. 1). This paper focuses on flat dendritic shaped planar crystals (see Table 1). For these
crystals, growth is primarily confined to the g-axis and the formation environment is one of water
supersaturation and a temperature of -15 £ 2 °C (jllustrated in Fig. 2 of Magono and Lee, 1966).

Ono (1970) graphically presented relationships between the length along the c-axis and the length
along the g-axis for different planar and columnar crystals (Fig. 1). The dimensions of most snow
crystal types were analysed by Auer and Veal (1970) to produce empirical relationships over a large
range of sizes. The following relationship describes the diameter (D) to thickness (T) relationship for
dendritic crystals: ’

T=22801D%7" (0,
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for diameters from 100 to 8000 pm (Auer and Veal 1970). The measurements of width and length by
Hobbs et al. (1974) yielded an empirical relationship of a different form:

T=99.17-37.49In D+ 3.844 (In DY (2),
for a range of diameters from 80 to 2000 um. Equations (1) and (2) produce similar curves, that fit

the data of previous researchers well. Between temperatures of -13 and -17°C, hexagonal crystals are
regular in shape, i.e., the b-axis (perpendicular to the a-axis) is 3.2 times the length of the a-axis.

Table 1. Number of analyzed crystals per type according to the Magono and Lee classification.

Magono.and Lee M-L M-L number of
classification name symbol  sample images crystals analyzed
stetlar crystal Pid >1< 1
ordinary dendritic crystal Ple *: 18
fernlike crystal P1f $ 9

steflar crystal with plates at ends P2a :%%g 1

steliar crystat with sectorlike ends P2b % 1
dendrite crystal with sectorlike ends P2d :%ﬁ: 2

plate with simple extensions P2e :@: 5

plate with sectorlike ends ?Zf @2 3 ’
plate with dendritic extensions P2g :@: 10 -

There are various forms of the dendritic type snow crystal. Table 1 presents the nine different
crystal types that were combined to derive the specific surface area distribution for dendritic snow
crystals, with 74% of the samples taking the typical dendritic form (Ple, P1f, and P2g). Grunow and
Huefner (1959) illustrated the distribution of diameters for various snow crystals, including dendritic
crystals (see Fig. 2a). A log-normal probability distribution function (pdf) was fitted to the distribution
of dendritic snow-crystal diameters (Fig, 2b).
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Figure 1. Characteristic growth modes of columnar and planar
ice crystals (Ono, 1970).
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Figure 2a. Frequency of snow-crystal diameters from Grunow and Huefner (1959). The crystal type is

according to the Magono and Lee classification.
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" Figure 2b. Distribution of dendritic snow-crystal diameters observed by Grunow and Huefner (1959}, the
corresponding log-normal probability distribution function, and the randomly obtained modelled diameters.

Since snow crystals are non-Euclidian objects, a fractal analysis can be performed for their
geometric properties. While the principles of fractals have been discussed by numerous researchers
(eg. Mandelbrot 1983; Feder 1988; and Korvin 1992}, a brief summary of the fractal analysis related
to the data available in this research follows. In two-dimensions, a power law relationship between
area (A) and perimeter (P) exists for a collection of similar, natural objects:

P AP/ (3),

where D, = the fractal dimension between A and P. For Euclidian objects such as a circle or a square,
D,p is equal to unity, but for objects in nature, D,p is greater than 1. In the literature, fractal analysis
has often been limited to a two-dimensional analysis since either the results are computed from 2-D
images or the results are intended to be graphically presented. However, the format of equation (3} can
be used to develop a relationship between volume (V) and surface area (SA), as follows:

SA o« v & Pu @),

where Dy, = fractal dimension between V and SA. For Euclidian objects, D, is equal to unity, while
it increases for non-Euclidian objects. The fractal dimension Dy, is significantly less than Dyp since
for natural objects, the change in perimeter compared to the change in area is more substantial than
the increase in volume compared to the increase in area.

For similar types of objects with different sizes, Korak’s law illustrates a relationship between the
rank Nr and an area A as follows:

Nr(@a>A) =4 /2 (5),

where the rank is the number of objects of area a that are greater than a particular area A, and the
fractal dimension Dy is the distribution of small and large area objects (Korvin, 1992). A wide range
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of Dy values have been reported in the literature. For example, Shook ez al. (1993) presented values
from 1.208 to 1.775 for snow-covered and snow-free areas during melt for different watersheds at

various times.

METHODOLOGY

The following eleven steps were used to determine the specific surface area of various dendrite
shaped snow crystals. '
1. While the specific fifty snow crystal images were chosen at random from the book Snow Crystals
by Bentley and Humphries (1931), general shapes were selected as to provide a distribution of different
dendritic type snow crystal configurations. (Table 1 presents the number of images per crystal type,
and the location of the image in Bentley and Humphries, 1931 is summarized in Table 2.) Several
images were scanned at different scanning resolutions up to a maximum of 1200 dpi. While there was
no scale on the images collected by Bentley, an assumption that a crystal is approximately 1.5 mm in
diameter yields each scanned pixel to be 8.3 pm at 100dpi and 0.7 pm at 1200 dpi. From examination
of the scanned images it was determined that a resolution of 1200 dpi provided too much detail and
hence would require too much manual image processing. Therefore, a resolution of 300 dpi was used
for scanning all image to enable some smoothing of the edges of each image.

2. The shapes within each scanned image were estimated as polygons using the prograrh COREL
OCR-TRACE™. To ensure that each image had a single outside shape, i.e., external boundary, each

Table 2. Summary of images type according to the Magono and Lee classification, and location as page
number, column number from left margin, and row number from bottom in Snow Crystals by Bentley
and Humphries (1931).

page column row  type page column row  type page column row type

149 2 1 Ple 156 2 1 pP2f 166 1 2 P2g
2 2 PIf 3 1 p2f 2 2 P2d
2 3 Ple 157 2 1 P2a 167 2 1 Ple
2 4 Ple 2 3 P1d 2 4 PIf
3 1 Ple 3 1 P2 33 P
3 2 Ple 3 2 Ple 173 2 1 Ple
3 3 Ple 3 4 Ple 181 2 2 PIf
3 4 Ple 160 1 I P2Ze 182 2 4 P2g

152 1 1 PI1f 1 2 P2g 185 2 3 PIf
1 2 PZe 1 4 Ple 188 1 4 PIf
1 3 P2g 2 1 Ple 2 3 Ple
2 2 P2g 2 3 P2g 189 2 3 Pif
2 3 P2g 2 4 Ple 3 2 P2g
2 4 Pif 163 2 2 Ple 193 2 1 P2g

156 1 | P2e 2 3 P2b 2 2 P1f
1 3 P2g 3 3 P2f 3 2 Pie
1 4 P2d 166 1 1 Ple
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image was manually processed so that the external border was at least 2 pixels wide. Afer performing
the automatic edge detection, the vectorized snow crystal images were manually viewed to ensure that
a single external shape was present. During the auto-trace, some internal shapes were vectorized as two
concentric polygons, of which one was manually removed.

3. For each vectorized snow crystal image, the polygons were converted into a text format containing
a series of x and y coordinates for each point. Each potygon was then checked for self-intersections,
since the auto-tracing produced some polygons that crossed themselves, similar to a figure eight. For
self intersecting polygons, the algorithm used to find the area (Step 4) incorrectly gives a smaller area.
To account for these shapes in the total area calculation self-intersecting lines were split into multiple
non-intersecting lines, i.e., a figure eight was turned into two circles. Self-intersections were
determined by calculating the cross products between the line segments of each polygon.

4. The area and perimeter for each polygon were defined as the sum of individual vector segments as

follows:
1
4 = 5 2 G Yy — X YD (6},
i=1 .
and
P = 21¢ (xf - xi+1)1 + (yf - yi+[)2 . (7)
i=

5. In order to correctly determine the volume and surface area of each snow crystal, it was necessary
to know if a polygen was circumscribed by any other polygons, so that its structure level could be
determined (see Fig. 3a). The first structure level was the extreme outside of the crystal, with a uniform
thickness. The second structure level was within the primary structure, and its thickness was a function
of the total crystal thickness or a specific amount (eg. 10 jum}, formed due to the step nature of planar
crystals. The third structure level was a cutout or raised area within the second structure, etc. Each
polygon was compared with the other polygons in the snow crystal using a test point to see if it was
circumscribed by them. The test point was found on the test polygon so that the point did not lie on
another polygon. If the test point did lie on another polygon the algorithm may have incorrectly
identified on which side of the polygon it was located. A ray was then drawn from the test point to a
point outside the snow crystal {polygon 3 in Fig. 3b). The ray was compared with each line segment
in every other polygon making up the snow crystal using algebraic cross products to determine if the
two lines crossed. When the number of intersections with another polygon was known, an odd number
of intersections demonstrates that the test polygon (polygon 3 in Fig. 3b) was inside another polygon
(polygon 1 in Fig. 3b) while an even number - indicated that it was outside another polygon (polygon
2 in Fig. 3b). By determining the number of polygons circumscribing the test polygon, its structure
level can be found.

6. The average image diameter along the three long axes of each snow crystal were computed from
the lengths between the most distant points. Since Bentley’s photographs were the same size, the data
obtained in steps 1 through 5 provided only a relative relationship between volume and surface area.
A probability distribution function was used to find the random diameter. From the Grunow and
Huefher (1959) data, the snow crystal diameter was estimated using a log-normal distribution with a
geometric mean of 1228 (D, of the dendrite crystal pdfin Fig. 2a) and a geometric standard deviation
of 1.479. The variance was reduced by one-third, since the standard deviation was defined as two-
thirds of the difference between D 4, and D, which is approximately 2 standard deviations.
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Figure 3a. A sample vectorized dendritic snow crystal image with 9 structure levels (Bentley and Humphries,
1931, page 152, bottom left corner).
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Figure 3b. The order and nesting of the polygons within
the vectorize representation of a crystal.
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Figure 3c. Sample cross-sections for the single structure level scheme with no
internal undulations, the alternating thickness scheme, and the incremental
thickness scheme.
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7. From the random diameter, the average snow crystal thickness was calculated using equation (1).
A normal distribution was assumed for the thickness, with a standard deviation equal to one-sixth of
the average. Two different thickness increment schemes were tested (Fig. 3c). For the alternating
thickness scheme, the even number structure levels were raised and the odd number structure levels
wererecessed. The alternating thicknesses for the even number structure levels were defined as:

T,=bxT, n
: fori €1l (8),

T, =b,XxT,

where T, = thickness of each structure ( i)

b= total change in thickness
For example, if b, equals 1.1, the change in thickness for the different structures was assumed to be
10% of the previcus structure’s thickness. The even number structure levels were -

T,=..=Ts=T,=T, _ (9).

To retain the randomly determined overall average thickness (T), the area (AA,) of each structure
level was used to weigh each thickness. In the alternating scheme the thickness ( T;) of the primary
structure level was determined by:

T‘xtzil.

T = i=l
1 Ad, + b A4, + DAy + - + bAA, (10).

For the incremental thickness scheme, each subsequent thickness was b, larger.
8. The total surface area {S4,) was defined as a function of the area (A4,) and perimeter (P,) of each
individual structure level i, as follows:

SAr =284, + T xP; + 2[DA, + [AT/=P,] + ... + 2[AA, + AT /xP ] ' (1D,

where /AT, is the absolute value of the thickness difference between structure level { and structure
level i-1, and n is the total number of intemnal structure tevels. Similarly the total volume (¥;) was
determined as: ' '

Vo= A4 XT, + A4, (AT + .. + Ad x/AT) {12).

The specific surface area (SSA) for each crystal was calculated as follows:
SSA = SA 7/ [Piee % Vo] (13),

where the density of ice { p,,.) at -15°C was assumed to be 0.915 g/em .

9. The distribution of specific surface area was catculated from the 50 sample images.

10.  Riming is the accretion of small particles that freeze onto the surface of snow crystals falling
through a cloud of supercooled water droplets. Due to the smalf nature of rime particles, it could be
assumed that the rime particles form frozen hemispheres or grow into mini-hexagonal crystals. Some
of the images in Bentley and Humphries (1931) illustrated small spherical rime particles as did a
majority of the photographs taken by LaChapelle (1969). However, Rango ez al. (1996) illustrated the
accumulation of rime along one edge of a hexagonal plate to be needles Spm in diameter and 10pm
in fength. The degree of riming is difficult to assess since it depends upon conditions through which
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the crystals fall. Therefore, crystals were simulated with no riming, 10% riming, and 20% riming. Two
conditions of riming were assumed to occur: on the projected area only, i.e., the top surface, and over
the complete crystal including the edges. For comparisen fifty percent riming only on the top surface
was assumed to be possible.

11, Since the actual diameters and thicknesses of the snow crystals were not known, the fractal
dimension between dimmeter and surface area, volume, or specific surface area could not be
determined. However, the fractal dimension between the volume and surface area, and the rank of the
particle area versus area were calculated, using equations (4} and (5).

RESULTS

Using 0.25 mm diameter classes, the randomly chosen diameters fit the statistics of the assumed
log-normal pdf, in particular the geometric mean is 4.1% less (1178 versus 1228) and the geometric
standard deviation is 6.6% more (1.577 versus 1.479) for the random diameters compared to the
Grunow and Huefner dendritic snow-crystal distribution. The general shape of the random distribution
is similar to the log-normal pdf, but with some undulations {Fig. 2b}. The mean computed thickness
was 5.1% larger than the corresponding Auer and Veal thickness, as illustrated in Figure 4.
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Figure 4. Comparison of the modelled crystal thickness versus the average thickness computed using the
Auer and Veal relationship.

Without riming, dendritic snow crystals have an average SSA of 0.18 m%/g with a range from 0.09
to 0.33 m*g (Fig. 5a). This range agrees with the SSA measurements of Adamson and Dormant (1966)
of 0.2 and 0.4 m’/g, the measurements taken by Hoff er al {1998) using nitrogen adsorption of 0.06
to 0.37 m¥g, and the light and scanning electron microscopes estimates of 0.05 to 0.5 m%g made by
Hoff et al (1998).

The cross-section area to mass ratio computed by Hogan (1994) for P2a, P2e, and P2g crystals are
very similar to those computed in this research (Fig. 5b}, however, the dendritic image estimates {P1d,
Ple, P'1f) are approximately .12 m*/g less than the Hogan objective function for P1e crystals. While
it is possible that the dendritic images have more surface undulations than are evident in the Bentley
images, this would account for only a portion of the 0.12 m %/g difference.

The difference between SSA and the cross-section area (Fig. 5a versus Fig. 5b) is the inclusion of
the area associated with the c-axis, i.c., this research considers surface undulations, while Hogan
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Figure 5b. Cross-section areas to mass ratio versus diameter for dendritic crystals (Fid, Ple, PIf), crystals
with ends or extensions (P2a, P2b, P2d, P2e, P2f, P2g), and four crystal objective functions (Pie, P2a, Ple
and P2g) computed by Hogan (1994),

{1994) looked at the projection of the crystal. With the assumption of an alternating thickness scherme,
the cross-section area of the 50 images is on average 52.7% of the total surface area with a rmaximum
of 81.5% and a minimum of 24.3%.

The different thickness schemes produced different specific surface area estimates. For a single
structure level scheme (i.e., only the outside of the snow crystal), the SSA (0.099 m?/g) is almost one-
half of the SSA for the corresponding alternating (0.182 m¥g) and incremental (0.163 m%g) thickness
schemes (see Fig. 6). The alternating scheme produced a 20% larger SSA than the incremental
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Figure 6. Specific surface area (in m%g) for the single structure level scheme, alternating and incremental
thickness schemes using a 10% change in the subsequent structure level thicknesses.

scheme. These results can be expected since use of the alternating thickness scheme illustrates internal
structures that increase surface area but decrease volume, as the different thicknesses are computed
considering the projected-areas. Both the incremental and alternating schemes add the same quantity
of surface area as subsequent structure levels are considered, however, the incremental scheme adds
mass at each subsequent structure level, while the alternating scheme only adds mass for every second
level, while reduci'ng mass for the structure levels in between.

The specific surface area increases as the percent change in the thickness increases. For the
alternating thickness scheme using a 5%, 10% and 15% change in the subsequent structure level
thicknesses, the SSAs were 0.171, 0.182, and 0.152 mzlg, respectively, as iilustrated in Figure 7. As
expected the 15% thickness change yields the largest SSA, as well as the greatest variation in SSA.

The complexity of structure levels is influenced by the automatic tracing software. Removal of the
fourth, sixth, etc. structure levels for 22 of the 50 samples, yielding the simplified scenario, resulted
in an average SSA decrease of 6%. While the change in the SSA was typically a small decrease (less
than 8% for 17 samples), a larger decrease was observed for 3 samples (SSA decrease of 13.6%,
22.3%, and 33.2%). The simplified scenarios were used for all calculations.

The presence of rime particles on the surface of the dendritic snow crystals increases the SSA. For
coverage of 20% rime particles on the projected top surface, the SSA increased by 4%, 54% and 60%
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Figure 7. Specific surface area (in m¥g) for the alternating thickness scheme using a 5%, 10% and 15%
change in the subsequent structure level thicknesses.
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for the top surface with hemispherical, needle and plate shaped rime particles. The hemispherical rime had a
radius of 5 pm, the needle rime was 10 um long and had a radius of 2.5 ym, while the plate shaped time was
10 pm in diameter and has a thickness of 5.7 pm.
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Figure 8b. Difference between the specific surface area for the condition of no riming, and 20% rime coverage
over the entire surface with hemispherical, needle and plate shaped rime particles.

for hemispherical, needle and plate shaped rime, respectively (Fig. 8a). For 20% coverage over the
entire area, the SSA increased by 7%, 90% and 88% (Fig. 8b). The hemispherical rime increases the
SSA by a small amount, as the relative increase in SSA by the addition of these rime particles is a
function of 3/42r), where r is the radius of the rime particle. The needle and plate shaped rime have
large surface areas relative to their masses, thus addition of such rime can increase the SSA
substantially. Needle or plate shaped rime droplets can double the specific surface area if they cover
209% or more of the total surface area. Table 3 illustrates these trends for other degrees of riming.

The Dy, fractal dimension between snow crystal volume and surface area was computed tobe 1.081,
with an r? values of 0.942 for the 50 datapoints, as illustrated in Figure 9a. The Dy fractal dimension
is 1.96 with an r* value of 0.937 for the relationship between rank and particle surface area (Fig. 9b).
This dimension increases to 4.133, with lesser agreement in the 50 datapoints (r* = 0.850) for the
specific surface area (Fig. 9c).
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Table 3. Specific surface area statistics for different riming schemes.

percent coverage  type of rime maximum minimum  average standard deviation
no rime 0.329 0.087 0.182 0.064
10% top hemispherical  '0.329 0.091 0.185 0.063
10% top needle 0.400 0.126 0.235 0.071
10% top ___plate 0.391  0.142 0.246 0.065
20% top hemispherical 0.329 0.095 0.189 0.062
20% top needle 0.454 0.160 0.280 0.076
20% top plate _ 0427  0.185____0.291 0.063
50% top hemispherical 0.329 0.107 0.198 0.059
50% top needle 0.561 0.247 0.382 0.082
50% top plate 0.477 0.272_ 0.369 0.053
10% complete hemispherical  0.329 0.093 0.188 0.063
10% complete needle 0.455 0.145 0.276 0.083
10% complete  plate _0.428 0.167 0.286 0.071
20% complete hemispherical  0.329 0.09% 0.194 0.061
20% complete needle 0.534 0.195 0.346 0.092
20% complete plate 0.466 0.223 0.343 0.066
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Figure 9a. Relationship between surface area and volume for the 50 snowflake samples.
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Figure 9b. Rank versus snowflake surface area for Kor2ak’s law of differently shaped objects.
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Figure 9c. Rank versus snowflake specific surface area for Kordak’s law of differently shaped objects.

DISCUSSION

The variations in the SSA for the different samples are partially based on the various assumptions,
such as the geometry of dendritic snow crystals. The alternating thickness scheme is intuitively better
than the single and incremental scheme, as indicated by visual observations of snow crystals. The
change in thickness is not uniform, as the crystal generally becomes thicker near the centre. As well,
the nature of each subsequent structure level is likely not as uniform as assumed. The edges of such
Structures are not square, but this would result in a minimal change in SSA. Some surface irregularities
exist that would increase SSA, but these are likely small. The presence of micropores can also increase
the SSA, but these features are only significant in ice crystals at very low temperatures (Hoff ef al.,
1998). Density assumptions are likely true, unless there are air inclusion or very large condensation
nuclei inside a particular snow crystal sample.

Errors in the estimation of S5A may have resulted from image analysis problems. The images
chosen were “clean’, such that there was no riming and limited melting, The images were chosen for
appropriate exposure during photography and for minimal opaqueness of the crystals to reduce the
grey-scale of pixels and produce purer black and white images. The transfer and manual manipulation
or clean-up of the images may have introduced errors. The identification of extra structures by the
tracing software occurred for some polygons that had a width in the photographs and the outside and
inside lines were identified as separate objects, creating additional structure levels. These were
typically removed to produce the simplified scenarios. As well, it should be noted that Bentley chose
only the best images and discarded irregular and non-symunetrical images.

Undulations in the SSA curves are caused by the distribution of diameters chosen at random, the
assumptions about the different structure levels and their thicknesses, and the sample snow crystals that
were used in the analysis. If the number of samples used in the analysis were to be increased, the
distribution of diameters would match the assumed log-normal pdf more closely, as well this would
also increase the distribution of different types of dendritic snow crystals. With more samples, there
would be a larger variation with diameter, as well, more distinct crystals shapes within the overall
classification of dendritic snow crystals could be identified for the estimation of individual SSA
curves,

There is no difference between the different crystal forms in Figure 5b, due in part to the physical
structure of the crystals and the subjective nature of crystal classification i.e., some particular crystal
forms resemble several different types. There is often a thickness, and hence an additional area, within
the plates of crystals with ends or extensions, as compared to crystals with larger perimeter but smafler
surface differences in fernlike dendrites. However, some of these structures that were diagnosed as
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being an external areas may have in fact been internal, which would decrease the net area, yet also
decrease the net mass.

The shape of the SSA curves could take a significantly different shape if the actual snow crystal
diameters were knowr. If this information had been available, the SSA analysis would have chosen
images such that a log-normal distribution with the statistics from Grunow and Huefner were
maintained.

The large SSAs of the two outliers in Figure 5a are a function of their shape (Ple and P2g as
classified by Magono and Lee). The crystals had wide tips, the overall diameter, and hence thickness,
were above average, and the third level thickness structure had a large area and perimeter. Thesc large
areas and perimeters resulted in a large addition of area, but reduction in volume for the alternating
scheme. .

The irregularities that exist in the synthesized snow crystals are not well represented by the volume
to surface area fractal dimension. If the actual diameter and thickness of the snow crystals were known,
then more fractal dimensions could be determined, and possibly used to similate shapes for random
crystals. A relationship likely exists between diameter and geometry, and hence SSA. Future work with
scanning electron microscope (SEM) images could investigate such relationships. SEM images present
more precise detail of snow crystals, as well accurate crystal dimensions.

The large Dy fractal dimension indicates that there is a significant distribution of surface areas for
the snow crystals, and the total object area is not concentrated into a small number of large objects.
This is especially true for the SSA, as illustrated by the alternating layers curve in Figure 5a; the
majority of the SSA was between 0.1 and 0.2 m ¥g with a few occurrences between 0.275 and 0.35
m%g. The large value of the fractal dimension Dy can be inferred from the snow crystal surface area
and volume relationships and the more equal distribution of total object area over the entire range of
object sizes.

Use of Bentley’s photographs to estimate SSA required in the order of 15 minutes per image to
analyze, excluding the overhead necessary to start the process, i.e., initially organizing the analysis
procedure. The most labour intensive component of the analysis was ensuring that the boundaries were
continuous (Step 2). Selection of suitable images was also time consuming, however future use of this
image analysis technique will likely use SEM images and the processing would likely be more
automated. For in situ analysis, stereoscopic images can be produced for this method of image
analysis, especially for non-dendritic snow crystal shapes. It should be noted that it may be difficult
to acquire full 3-D images (using a SEM or stereoscope) that could be rotated for viewing and analysis,
and various assumptions made for using the Bentley images would also be required for other snow
crystal images. It is recommended that the use of computational geometry to estimate the SSA of snow
crystals should be performed on SEM images in parallel with other SSA estimation techniques, such
as nitrogen adsorption.

CONCLUSIONS

A method was presented to estimate the surface area to mass ratio of dendritic shaped snow crystals
that form between air temperatures of ~13 and ~17°C. For the 50 dendritic snow crystal samples taken
from Bentley and Humphries (1931), the average specific surface area was 0.182 m¥g. With rime
patticles covering 10% of the entire snow crystals, the average SSA increased to 0.188, 0.276, and
0.286 m%g for hemispherical, needle and plate shaped rime particles, respectively. For a 20%
coverage, these values increased to 0.194, 0.346, and 0.343.

Analysis of scanning electron microscope images could assist in adjustment of the various
geometric assumptions and other assumptions, such as the existence of micropores, and the shape, size
and coverage extent of rime particles. This would improve the specific surface area estimates. The
results presented in this paper can be expanded with the assistance of SEM images and nitrogen
adsorption measurements to examine the surface areas of various crystal types that form at different
air temperatures.
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