
74th EASTERN SNOW CONFERENCE
Ottawa, Ontario, Canada 2017

3

Meteorological inventory of Rain-On-Snow events and detection 
assessment in the Canadian Arctic Archipelago using passive 

microwave radiometry

DOLANT C., 1,2 LANGLOIS A. 1,2, BRUCKER L.3,4, ROYER A. 1,2, ROY A. 1,2, AND 
MONTPETIT B. 1

ABSTRACT

The Arctic has witnessed significant warming over the past four decades, leading to a variability 
of consequences such as heat waves, increased occurrence of winter storms and rain-on-snow events 
(ROS). The spatial and temporal distributions of ROS across the Canadian Arctic Archipelago 
(CAA) remain poorly understood owing to their sporadic nature in time and space, which motivated 
the development of remote sensing algorithms. The potential of passive microwave observations 
was demonstrated in detecting ROS events. Lately, promising results were obtained using an 
algorithm based a brightness temperature gradient ratio. Its validation however remained limited 
due to a short study period and limited number of sites. This paper uses a large meteorological 
dataset across the CAA to further adapt our existing algorithm. Hence, this study highlights the 
distribution and evolution of ROS occurrences reported since 1985 at 14 Environment and Climate 
Change Canada (ECCC) weather stations across the CAA. Data show that more than 600 ROS 
events were inventoried since 1985, 80% of which occurred during the spring season. We introduce 
an adaptation of a detection algorithm (by sensitivity analysis on the detection threshold) with an 
error of ~5%, to investigate spatiotemporal patterns in event occurrence across the CAA. 

Keywords: Rain-on-snow events; Canadian Arctic Archipelago (CAA); climatological trends; 
microwave radiometry

INTRODUCTION 

The impacts of global climate change on the environment are significant due to a variety of 
climate feedback processes, such as an increased occurrence of heat waves, winter storms (Trenberth 
et al., 2007; Trenberth, 2011) and rain-on-snow (ROS) events (Brown and Mote, 2009; Chen et al. 
2013). This is especially true in northern regions, where the warming is most pronounced (Serreze 
et al. 2009; Liston and Hiemstra, 2011; Serreze and Barry, 2011; Pradhanang et al. 2012 & 2013; 
Klos et al. 2014; Cullather et al. 2016). Direct consequences in the northern hemisphere include an 
overall reduction of snow depths (Brown and Braaten, 1998), snow cover extent (Brown et al. 2010; 
Derksen and Brown, 2012; Derksen et al., 2012) and sea ice extent (Steele et al. 2008; Holland et 
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al. 2010; 2014; Comiso J.C, 2014), and an increased occurrence of extreme winter events (Grassi et 
al.,�2013).�More�specifically,�the�rise�in�temperatures�(L’hôte,�2005)�has�significant�impacts�on�the�
precipitation regime (phase) and is amongst the most significant consequences of atmospheric 
warming and variability in the Arctic since the early 1980s (Winton, 2006; Liston and Hiemstra, 
2011; IPCC, 2007 & 2014; Langlois et al. 2017). Of note, under warming temperature trends, ROS 
events on the one hand could increase with increasing ratio of rain versus snowfall events while on 
the other hand could decrease if the snow cover decreases. Such competitive impacts may render 
the trend of ROS difficult to analyse (Chen et al., 2015; Ye et al., 2008). However, from ROS-
altered snow state analysis using satellite data, ROS events appear now more frequent than during 
the 1990s (Langlois et al. 2017) ROS significantly alters the snowpack state. Firstly, it leads to an 
increased liquid water content (LWC) in the snowpack. This process when followed by low air 
temperatures can then be responsible for the formation of ice crusts (Montpetit et al. 2013; 
Montpetit, 2015; Dolant et al. 2016) that have a strong impact on ecology (e.g., ungulate grazing 
conditions) (Putkonen and Roe, 2003; Rennert et al. 2009; Bokhorst et al. 2016; Johnson et al. 2016; 
Sokolov et al. 2016; Langlois et al. 2017; Ouellet et al. 2017), hydrology (e.g., modification of flow, 
soil saturation), and energy balance (e.g., modification of snow and soil surface and permafrost) 
(Putkonen, 1998; Dethloff et al. 2006; Mazurkiewicz et al., 2008; Romanovsky et al. 2010). ROS 
can also impact the snow surface properties (e.g., albedo) and the properties of the snow layers, such 
as density (Marshall et al., 1999), liquid water content and thermal conductivity (Domine et al., 
2016). 

Detecting ROS events from space borne microwave radiometry has been the subject of several 
studies (Grenfell and Putkonen, 2008; Dolant et al., 2016; Langlois et al., 2017). The use of passive 
microwaves (PMW) makes it possible to obtain information on the different snowpack layers based 
on their dielectric response. This represents an interesting avenue for tracking and studying ROS 
events across the Arctic from space. Grenfell and Putkonen (2008) demonstrated the possibility of 
using PMW to monitor ROS from space with a combination of microwave brightness temperature 
(TB) gradient and polarization ratios. Their study was about on a single ROS event on Banks Island, 
and the authors highlighted the need for more statistics-based research. This motivated the work by 
Dolant et al. (2016), who developed an empirical approach to detect ROS using the gradient ratio in 
both vertical and horizontal polarizations. That work was validated with ROS observations in 
Nunavik (northern Québec, Canada), but the validation remained spatially and temporally limited. 
More recently, Langlois et al. (2017) analyzed the occurrence of ROS and ice layers detected from 
PMW and the link between these occurrences and caribou populations. Their work included PMW 
signatures from 18 islands across the Canadian Arctic Archipelago (CAA), and suggested an 
adjustment to the threshold initially proposed in Dolant et al. (2016).

The objectives of this paper are: (1) to inventory and classify all ROS observations recorded by 
the network of Environment and Climate Change Canada meteorological stations in the CAA and 
conduct a statistical analysis on ROS occurrence trends; and (2) to use this new dataset of ROS 
observations to validate and adapt the gradient ratio threshold suggested by Dolant et al. (2016) and 
evaluate the best value minimizing omission and commission errors in an operational application.

STUDY SITES AND DATA

Meteorological data

Water daily amount
ECCC characterizes the liquid precipitation by raindrop size and velocity to distinguish between 

precipitation phases. Here, we only present information about phase distinction (i.e., drizzle, hail, 
snow, rain) and precipitation amount (cumulative of the day) (Fig. 1A). Liquid water particles are 
discriminated as rain when the raindrop diameter is larger than 0.5 mm. Raindrops are normally 
larger in size than drizzle particles (i.e., small water drops with a diameter less than 0.5mm, uniform 
precipitation), however the partial evaporation of rain drops can lead to confusion. Solid 
precipitation (i.e., snow, hail), which can also blend with liquid precipitation, was classified as ROS 
mix in this study.  Precipitation amounts were measured in millimeters with a rain gauge sensor, and 
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values�below�0.2�mm�were�classified�as�“Trace”.�Precipitation�was�also�characterized�by�intensity,�
from low (precipitation rate less than or equal to 2.5 mm.h-1) to heavy (precipitation rate equal to or 
greater than 7.5 mm.h-1). 

In our database, precipitation events had predominantly small water amount (Fig. 1A). In all four 
classes (ROS rain, ROS rain/drizzle, ROS mix and ROS Unclass), the median amount of precipitation is under 
0.9 mm while the mean amount precipitation ranges between 1.3 mm and 2.1 mm. The lowest 
average precipitation was in Alert (AT) and Sachs Harbour (SH), with 0.78±0.63 mm and 0.82±1.78 
mm of rain per event, respectively. The highest values (>3mm) were recorded in Pond Inlet (PI), 
Nanisivik (NK) and Kugaaruk (KK), with precipitation averages of 3.6±5.60, 3.7±3.15 and 
4.64±4.33 mm of rain, respectively. 

Air temperature
The station temperature data (Fig. 1B) includes four distinct measurements: dry thermometer, wet 

thermometer and daily maxima and minima thermometers. These measurements are accurate to one 
tenth of a degree Celsius. The air temperatures in Figure 1 were extracted and averaged during ROS 
events only (ROS rain, ROS rain/drizzle, ROS mix and ROS Unclass).  For our study period, the results 
showed that ROS rain was observed at temperatures of 1.41±2.14 °C while ROS rain/drizzle, ROS mix

and ROS Unclass, occurred at colder temperatures, 0.06±2.56 °C, -1.06±6.8 °C and -2.11±5.05 °C, 
respectively. When considering all four classes, the mean observed air temperature during ROS was 
0.05±3.77 °C). 

Snow depth measurement
Snow depth (Fig. 1C) was measured by a trained person at the station using a snow scale (cm), 

and hourly measurements were available. The minimum observed snow depth we used was 5 cm to 
limit the number of satellite observations over grid cells with partial snow cover. For our study 
period, the statistics for snow depth measurements are similar for the four classes: 17.7±14.4 mm, 
16.1±12.1 mm, 20.5±15.0 mm and 17.5±13.9 mm for ROS rain, ROS rain/drizzle, ROS mix and ROS 
Unclass conditions, respectively.

Rain-on-Snow duration 
The complementary observations recorded ROS event duration and precipitation type. An 

automatic system qualified the precipitation by state: rain, snow, drizzle, hail, freezing rain, freezing 
drizzle and unknown. We also extracted ROS event duration data.  Results show ROS duration of 
4.8±3.7 h, 6.0±4.3 h, 5.0±3.8 h and 2±0 h for the ROS rain, ROS rain/drizzle, ROS mix and ROS Unclass

conditions, respectively. 
Data on precipitation intensity (low, moderate and heavy) was also available. Other information 

such as visibility and cloud conditions was available, but was not used in this study. 
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Figure�1.��Statistics�(upper�row,�labelled�with�capital�letters)�and�distribution�(lower�row,�labelled�with�
lowercase�letters)�of�precipitation�amount�(A,a),�air�temperature�(B,b),�snow�depth�(C,c)�and�ROS�

duration�(D,d)�measured�at�ECCC�meteorological�station.�The�values�represent�the�average�of�all�sites�
for�four�classes�of�ROS�events.�The�boxplot�(capital�letter)�represents�interquartile�range;�black�lines�

represent�median�and�points�represent�mean�value.�The�histograms�(lowercase�letters)�show�a�
distribution�of�ROS�events�(all�classes);�black�points�represent�median�value�and�blue�points�represent�

mean�value.

Passive microwave data
For this study, time series of TB were recorded by three passive microwave sensors onboard five 

different platforms between August 29, 1984 and June 18, 2014, and were downloaded from the 
National Snow and Ice Data Center (NSIDC) and used here for the ROS detection retrievals. The 
TB dataset at 19 and 37 GHz in both horizontal H and vertical V polarizations was obtained from 
the Scanning Multichannel Microwave Radiometer (SMMR) (Knowles et al., 2000) onboard the 
Nimbus-7 platform for the period August 29, 1984 to July 9, 1987. After this period, the TB was 
extracted from the Special Sensor Microwave/Imager (SSM/I) onboard Defense Meteorological 
Satellite Program (DMSP) satellite F08 from July 9, 1987 to December 6, 1991, and the SSM/I and 
the Special Sensor Microwave Imager/Sounder (SSMIS) (Wentz, 1997; Wentz and Spencer, 1998, 
Colton and Poe, 1999; Wentz, 2013) onboard DMSP F11, F13 and F17 from December 6, 1991 to 
June 18, 2014. The spatial resolution of these products is 25 km, projected on the Equal-Area 
Scalable Earth Grid (EASE-Grid). The products used consist of daily averages in EASE-Grid pixels 
for ascending and descending orbits TB asc and TB desc). The ascending node is at local noon for 
SMMR, at 6:00 am for SSM/I F08 and 6:00 pm for TB extracted from SSM/I and SSMI/S F11, F13 
and F17 (local time). The descending node is offset by 12 hours.

a b c d
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METHODS

Inventory approach
Our inventory analysis focuses on the period 1984 (start of winter) to 2014 (end of winter), a 

period with coincident meteorological measurements (precipitation, air temperature, and snow 
depth) and human observations (qualitative information about precipitation type and ROS duration) 
from 14 ECCC stations across the CAA as well as daily passive microwave observations. 

For each station and event during the analysis period, we extracted hourly measurement of 
precipitation amount, air temperature and snow depth values. Furthermore, in this study, four 
precipitation classes were analyzed: 1) precipitation composed of rain only (ROS rain.); 2) 
precipitation composed of rain and drizzle (ROS rain/drizzle); 3) precipitation composed of rain, hail 
and snow (ROS mix.); and 4) rain with no specific observation of phase (ROS Unclass). This 
classification is necessary to evaluate and enhance the detection capacity of our retrieval approach.

Atmospheric correction
An atmospheric correction is needed to remove atmospheric contribution in the satellite signal. 

Precipitable water data (PWAT) from the North American Regional Reanalysis (NARR) (Mesinger 
et al., 2006) was used to correct TB data for atmospheric contributions (Roy et al., 2012). 
Atmospheric correction was calculated using the Millimeter-wave propagation model (Liebe, 1989) 
implemented in the Helsinki University of Technology (HUT) snow emission model (Pulliainen et 
al., 1999). The model considers radiative transfer through the atmospheric layers and calculates 
values of downwelling TB (TBatm↓),�atmospheric�transmissivity�(γatm) and atmospheric upwelling TB

(TBatm↑) (Liebe, 1989). 
The relationship between PWAT and atmospheric upwelling contributions (adjusted from Roy, 

2013) were expressed as follows:

(1)

(2)

The TB corrected from the atmospheric contribution was obtained using Eq. (3):

(3)

with

(4)

(5)

Over the CAA, the atmospheric corrections led to corrections averaging 1±0.4 K, 2±0.6 K, 1.6 
±0.4 K, 4±0.8 K for TB at 19 GHz V and H and 37 GHz V and H, respectively.  

Rain-On-Snow detection algorithm
The presence of liquid water within the snow and on its surface increases emissivity 

proportionally to frequency. As such, warm water at the surface (from a ROS event) will lead to a 
rapid increase of TB at 37 GHz (faster than 19 GHz). Dolant et al. (2016) demonstrated that in the 
horizontal polarization, the TB at 37 GHz becomes warmer than at 19 GHz, while 19 GHz in the 
vertical polarization remains warmer owing to a higher penetration depth (soil contributions). Dolant 
et al. (2016) demonstrated that the gradient ratio used by Grenfell and Putkonen (2008) in such 
conditions is positive in the vertical polarization and negative in the horizontal polarization. 

(6)
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The ratio of gradient ratio, named GRP (Eq. 6), gives a signal inversion (negative GRP value) 
which characterizes rainfall. Dolant et al. (2016) demonstrated that a GRP threshold at 1 allowed 
for ROS detection in Nunavik, but it may be slightly too high for a larger scale application in the 
Arctic as considered in this paper.

RESULTS AND DISCUSSION

Rain-On-Snow analysis from meteorological stations
Using 14 weather stations in the CAA, a total of 625 ROS events were identified, of which 265 

were classified as ROS rain, 174 as ROS rain/drizzle, 31 as ROS mix and 155 as ROS Unclass for the 1984-
2014 period. Figure 2A shows the distribution of ROS classes across the CAA and highlights a 
higher occurrence of ROS at lower latitudes (< 70°N). High latitude stations (> 70°N) registered 
less than 150 ROS events between 1984 and 2014 (i.e., ~22% of all ROS events identified). The 
highest number of ROS occurrences was seen at Hall Beach (HB), with more than 100 events 
throughout the period. This variability between northern and southern arctic stations could be 
explained by oceanic currents, warmer seasonal temperatures and associated increased moisture, but 
no data are available to validate such assumption. 

Figure�2.��Monthly�distribution�of�ROS�events�between�1985�and�2013�in�the�CAA.�Pie-chart�size�
represents�the�number�of�ROS�events�and�colors�represent�different�months.

We extracted ROS events from the meteorological station database for four periods: fall (~ 
September 20 to ~ December 20), winter (~ December 20 to ~ March 20), spring (~ March 20 to 
~June 20) and summer (~ June 20 to September 20). The temporal occurrences for each of these 
periods are shown in Figure 3. ROS events are unevenly distributed through the year. Indeed, the 
spring ROS accounts more than 75% of the total occurrences, while ~14% of the events occur in 
fall, ~8% during summer and less than 1% in winter. Of relevance, the month of June accounts for 
more than half of the ROS recorded at all stations throughout the study period. One should note that 
13 of the 14 stations received at least one ROS event during spring, whereas five to 11 stations were 
affected during fall, and one to four during winter. During the fall and winter periods, ROS events 
have a significant impact on snow metamorphism and stratigraphy with the formation of an ice crust 
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near the surface that affects energy transfer (Colbeck, 1980). Although the metamorphism processes 
can be observed during spring, the sustained warm air temperatures will promote a transition 
between the pendular and funicular regimes, leading to deeper water percolation. The modification 
of snow structure and formation of ice crusts throughout the year can lead to unfavorable grazing 
conditions for various ungulate species (Sokolov et al., 2016; Ouellet et al. 2017; Langlois et al.
2017). 

Figure�3.��Annual�vs.�monthly�distribution�of�ROS�events�(for�each�class)�during�the�analysis�period�for�all�
stations�combined�(A)�and�seasonal�distribution�and�evolution�of�ROS�events�for�all�stations�combined�

(B).

The results of seasonal trend for fall, winter, spring and summer do not suggest a significant trend 
due to high year-to-year variability, it is interesting that spring and summer seasons experience 
fewer ROS events (perhaps linked to a reduced snow cover duration), while an increase in event 
occurrence is seen during fall and winter. This is relevant for various applications, such as caribou 
grazing conditions since November-March is the migration period and is a critical time for calf 
survival.

Interannually ROS distribution by station does not appear to have followed any trend since 1985 
(Fig. 4), despite a rise in air temperature. We also investigated potential trends by precipitation class 
(ROS rain, ROS rain/drizzle, ROS mix and ROS Unclass) (Fig. 4), and the results did not reach statistical 
significance.  Although an increase in temperature of about 2°C has been clearly visible since 1984 
(Fig. 4B), no statistically significant trend can be seen in ROS occurrence. As expected, we see a 
predominance of low latitude stations (from TK to KLK; i.e., <70N) in the interannually distribution 
of global ROS (Fig. 4A) and for the ROS rain condition, while we can see a predominance of higher 
latitude stations (from SH to AT, i.e., >70N) for ROS rain/drizzle. For other conditions, no trend can be 
distinguished (Fig. 4 E, F). Although there is no notable trend, significant variability can be observed 
where peaks in occurrence can be linked to main northern climate modes. It appears (not shown) 
that the negative periods of the Arctic Oscillations (as well as the very similar North Atlantic 
Oscillations, http://www.cpc.noaa.gov) are well synchronized with the observed higher numbers of 
observed ROS events (>20/yr) between 1984 and 2010. These results agree with Cohen et al., 2015 
analysis derived from reanalysis-based study.
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Figure�4.��Temporal�yearly�ROS�distribution�by�station�between�1984�and�2014,�using�all�event�types�(A),�
for�ROS�rain�(C),�ROS�rain/drizzle�(D),�ROS�mix�(E)�and�ROS�Unclass�(F)�separately.�These�figures�are�compared�
to�winter�air�temperature�(annual�mean�from�ECCC�stations)�trends�for�all�stations�combined�during�same�

period�(B).

The distinction between different precipitation conditions is important from a microwave 
radiometry perspective. The presence of rain, drizzle or snow in and on snowpack have a different 
impact on TB. In fact, mixed precipitations have a smaller impact on TB (i.e., GRP), and are thus 
harder to detect using our algorithm. Furthermore, the relationship between precipitation amount 
and air temperature did not follow any specific spatial distribution. In Figure 5 we can see this 
relationship where ROS rain were observed at temperatures above 0°C and the precipitation amounts 
are concentrated around 2 mm except for KK and NK (Fig. 5A). For the ROS rain/drizzle condition, the 
values are centered around 0°C, and precipitation amounts remained under 5 mm for all stations 
(Fig. 5B), while the relationship is more scattered for ROS mix and ROS Unclass conditions with air 
temperature values varying between -10°C and +5°C and precipitation amount values varying from 
0.5 to 2 mm. For ROS Unclass, a predominance of small average values of precipitation amounts and 
air temperatures below 0°C can be seen.  

A B

C D

E F
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Figure�5.��Relationship�between�air�temperature�and�precipitation�amount�for�rain�conditions�(A),�for�rain�
and�drizzle�conditions�(B),�for�mix�conditions�(C)�and�for�unclass�conditions�(D),�between�1984�and�
2014.�The�colored�dots�correspond�to�station�averages�and�the�grey�points�are�data�for�all�stations�

combined�for�different�ROS�classes.

Figure 6 shows the distribution of precipitation rate (in mm.h-1) for each ROS condition. Most 
ROS (irrespective of ROS condition) are classified with small precipitation rates (i.e., <1 mm.h-1). 
It is important to distinguish rate and amount of precipitation.  Precipitation rate is derived from the 
accumulated precipitation and time duration recorded at the meteorological station so that the 
derived rate value is an hourly approximation (due to a lack of robust data of ROS time duration), 
and not a direct measurement. Given the rather cold temperatures and low humidity at which ROS 
occurs in the Arctic, the precipitation rates remain rather small. The precipitation rate itself can be 
classified into 5 categories (<0.5 mm; 0.5 to 1 mm; 1 to 2 mm; 2 to 5 mm and >5 mm). It is possible 
to see a predominance of weak precipitation rates (i.e., rate <0.5 mm.h-1), which corresponds to 
71.3%, 62.6% and 77.4% of all ROS events for ROS rain, ROS rain/drizzle and ROS mix, respectively 
(this statistic is not available for ROS Unclass due to a lack of data). 

Figure�6.��Number�of�ROS�event�(nROS)�per�classes�of�precipitation�rate�in�mm.h-1,�for�ROS�rain,������������
ROS�rain/drizzle,�ROS�mix�and�ROS�Unclass�conditions,�for�all�stations�combined�across�CAA.

A B DC
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Passive microwave detection using GPR approach
It remains unclear what minimum precipitation amount or rate will lead to a ROS detection using 

our passive microwave algorithm. As explain in section above, no specific trends are seen and that 
the omission of small events will remain a source of error.  In Figure 7A we thus present the 
relationship between the GRP threshold and number of ROS detected. One can see a decrease in 
detected events with a decreasing GRP threshold over a range of -1 to -20 with a more significant 
decrease between thresholds of 1 (threshold of Dolant et al., 2016) to -5 (i.e. when GRP = 1, nROS 
= 7688 in ascending orbit and 4936 for descending orbit, whereas when GRP = -5, nROS = 289 for 
ascending orbit and 167 for descending orbit).  

Figure�7.��Average�number�of�ROS�(nROS)�detected�as�a�function�of�different�GRP�thresholds�for�all�
stations�and�for�both�ascending�and�descending�orbits�(A).�Total�number�of�commission�and�omission�of�
detection�(B)�and�error�evolution�(in�percent;�C)�for�GRP�threshold�variation,�in�subplots�B�and�C,�the�line�
corresponds�to�commission�and�the�dotted�line�corresponds�to�omission,�the�green�line�corresponds�to�
ascending�orbit�and�the�purple�line�to�descending�orbit.�For�all�subplots,�the�grey�area�represents�the�

standard�deviation.�For�A,�B,�C�the�dashed�line�in�grey�correspond�at�threshold�of�Dolant�et�al.,�2016�and�
the�red�dashed�line�corresponds�at�new�threshold.

We investigated the sensitivity of the detection algorithm to the threshold by comparing omission 
and commissions over the same range of GRP thresholds. Commissions occur when a ROS is 
detected by the algorithm, but not observed at the station (commission by the algorithm). Omissions 
occur when the opposite is observed (ROS seen at station but not detected by the algorithm). The 
best ROS event detection (perfect match between inventory date and detection date) is achieved 
when using a low GRP threshold (around -1), but that will lead to a significant increase in 
commissions (Fig. 7B).  Figure 7C also suggests that most of the errors come from commissions 
and that the total error (omission + commission, see Fig. 7C) stabilizes at -10, where total error is 
equal to 1.9 for ascending orbit and 1.3 for descending orbit (i.e. omission is around 44 for each 
orbit and commission is around 152 for ascending orbit and 93 for descending orbit), which becomes 
the updated threshold for ROS detection. It also agrees with the nROS observed at the stations (Fig. 
7A).  

DISCUSSION

The main uncertainties using the available ECCC meteorological information are the precipitation 
timing and amount. First, the satellite passes are fixed, and no information is available on rain 
amount at a specific time (only daily cumulated values are available). For instance, a satellite can 
pass overhead during a ROS without detecting it if insufficient water is present to create the TB

reversal�between�19�and�37�GHz�at�horizontal�polarization.�This�would�result�in�an�‘omission’�from�

BA C
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the algorithm. As such, the dataset cannot be used as an absolute reference for validation of the GRP 
approach, but it provides a collection of rain conditions and TB responses to evaluate the sensitivity 
of the threshold (Figs. 7A and 7B).  A true validation and adjustment of the approach would require 
hourly precipitation phase data, which will be available in Cambridge Bay in 2018 (disdrometer 
installation planned). Even though these uncertainties are present, this work allows a good 
framework of ROS detection measurement, and thus a good overview of this phenomenon 
throughout the CAA area. Other studies will evaluate the link between meteorological conditions, 
ROS intensity and impact intensity in snow structure and in environment. Nonetheless, our results 
highlight the best compromise for detection accuracy, where a threshold of -10 suggests a good 
equilibrium between omissions and commissions. One could reduce the threshold to increase the 
number of perfect detection matches, however this would translate into an increase in commissions, 
thereby reducing the overall accuracy. Moreover, this threshold could be adjustable for different 
applications and different levels of application (e.g., increasing the threshold to -5, where here more 
than 200 ROS could be detected, for civil security in Inuit communities (Berkes and Jolly, 2001)). 

The periods for which visual observations are available is another source of uncertainty. However, 
the datasets included several gaps in these periods, occasionally with no observations for several 
consecutive days, which meant that the algorithm had no reference data. Consequently, it is hard to 
conclude on spatial and/or temporal event occurrence trends using this dataset. 

CONCLUSION 

This study presented ROS occurrences at 14 stations across the Arctic between 1984 and 2014 to 
evaluate the robustness of the GRP approach developed by Dolant et al., 2016 in an Arctic context.  
The basic statistical analysis highlighted a total of 603 ROS events throughout the study period 
(1984-2014), dominated by event occurrences at lower latitude stations. Three periods were studied 
separately and results show that despite no significant trends in the cumulated yearly occurrence, an 
increase is seen in the fall and winter ROS events. 

We used the ROS inventory dataset to evaluate the performance and sensitivity of the GRP 
threshold developed by Dolant et al. (2016). Results suggest using a different threshold to 
differentiate between pure rain events and mixed precipitations with GRP thresholds of -15 and -10, 
respectively. Those thresholds also appear to match with the lowest detection error computed with 
omissions and commissions. Intuitively, the next step is to compute binary images of detected ROS 
across the CAA, and evaluate yearly anomalies in event occurrence (e.g., links to El Nino and Arctic 
Oscillation). Furthermore, the remote sensing product will also allow a better understanding of the 
various processes that can trigger an ROS. For instance, binary maps of event occurrences could be 
compared to sea proximity and polynya occurrence and evaluate future spatio-temporal trends of 
ROS across the Arctic.
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