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ABSTRACT:  

The ability of Global Climate Models (GCMs) to simulate observed meteorologic and 
hydrologic variables is an important indicator of the reliability of these models to project future 
climate conditions.  In this study we evaluate the ability of GCMs participating in the 
Intergovernmental Panel for Climate Change’s (IPCC) Fourth Assessment Report (AR4) to 
simulate variability in the snow water equivalent (SWE) in New York City Water Supply 
watersheds located northwest of NYC in the Catskill Mountains. SWE is estimated using an 
empirical temperature-based degree day model. Inputs to this model are either measured historical 
meteorological (1961-2000) data or GCM model output for the same historical period.  The 
evaluation of the GCMs is based on a skill score developed using probability distribution 
functions derived from the time series of simulated snowpack. From the skill scores (SS) 
calculated, the GCMs are ranked based on their ability to simulate the snowpack. These results 
have implications for selecting a subset of GCM simulations for climate change impact 
assessments in New York City’s water supply.  

Results show that the GFDL 2.0 (gf001) model has the highest SS (0.93) and CCSM (ncc09) 
model has the lowest SS (0.26).  Based on the SS, the GCM ensemble members are classified into 
three categories high, medium and low performance. The PDFs for the three performance classes 
show the largest between-model variability for models in low performance class. Differences 
difference between the means and medians of observation-based and GCM-based simulation were 
also greatest in the low performance class. 

Keywords: Snow water equivalent (SWE), Evaluation AR4 models, Global climate models 
(GCMs), Probability based skill score, temperature based snowmelt algorithm, GWLF  

INTRODUCTION  

Snowmelt runoff is an important source of water in the watersheds of the New York City water 
supply that provide about ninety percent of the New York City’s (NYC) daily water demand. One 
hydrologic change that has been observed in this region during the period 1952-2005 is a shift in 
the timing of snowmelt runoff to earlier in the year (Burns et al., 2007) and more extreme 
winter/spring runoff events.  If the climate continues to change in future, the contribution of spring 
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snowmelt to streamflow may also change. Given the fact that changes in snowmelt runoff in 
Catskill Mountain (West of Hudson (WOH)) watersheds have potentially important implications 
for the water supply of New York City, there is a need to study the potential impacts of climate 
change on the quantity of snowmelt runoff in these watersheds. For this purpose, data derived 
from a suite of Global Climate Models (GCMs) are being used to drive watershed models to study 
snowmelt runoff in the absence of observed snow data. 

Presently, the outputs from GCMs, related to snow and snowmelt are only available at monthly 
timescales. Snow cover fraction (SCF), an output from GCM is diagnostically derived from 
prognostic variables: snow water equivalent (SWE) or snow depth (SD). The details of the studies 
that have examined GCMs with respect to snow are given in Table 1. From the table it can be 
observed that snow simulations (SWE, surface albedo, SD, SCF, snow mass, snow cover area) 
from GCMs are evaluated at monthly, seasonal and annual timescales using methods such as 
annual cycle, frequency distribution, mean, median, decadal scale variability (Foster et al., 1996; 
Yang et al., 1999; Frei et al., 2003; Frei et al., 2005; Frei and Gong, 2005; Roesch, 2006; Roesch 
and Roeckner, 2006). No studies have focused on the evaluating the ability of GCM in simulating 
modeled snow accumulation and melt at daily timescales. 

Table 1 Literature review 

S
.
N 

Variable name Region of 
study 

Time 
scale 

Evaluation metric GCMs References 

1 Snow cover, 
Snow mass 

North 
America, 
Eurasia 

Mean 
month
ly 

Climatology plots Hadley centre, 
CGCM, 
GENESIS, 
ECHAM, GISS, 
GLA, ARIES 

(Foster et 
al., 1996) 

2 Snow mass, 
extent 

Mid-latitude 
Grasslands in 
Russia, 
California 

Month Monthly time series 
plots 

CCSM (BATS) (Yang et 
al., 1999) 

3 Snow cover area 
(SCA) 

North 
America, 
Eurasia 

Month Interannual variability 18 GCMs 
participating in 
AMIP-1 

(Frei et al., 
2003) 

4 SCA North 
America 

Annua
l, 
Decad
al 

mean, Decadal scale 
variability (DSV) 

21 GCMs 
participating in 
IPCC-AR4  

(Frei and 
Gong, 
2005) 

5 Snow water 
equivalent 
(SWE) 

North 
America 

Month
, 
season
al, 

Box and wishker plots, 
monthly mean and 
standard deviation, 
Pearson correlation 
coefficient  

18 GCMs 
participating in 
AMIP-1 

(Frei et al., 
2005) 

6 SWE, Snow 
cover fraction 
(SCF), Surface 
albedo 

North 
America, 
Eurasia 

Month
, 
season
al 

Annual cycle, biases, 
frequency distribution 

Most GCMs 
participating in  
IPCC-AR4  

(Roesch, 
2006) 

7 SCF, snow 
depth (SD) 

Eurasia Month Annual cycle, 
frequency distribution 

ECHAM4, 
ECHAM5 

(Roesch 
and 
Roeckner, 
2006) 

 
The watershed models used to study the hydrology of this region are run at daily timescales. 

Higher resolution snow data can however be obtained indirectly by modeling SWE at daily 
timescales using daily simulations derived from GCMs. Different approaches of varying 
complexity ranging from simple regression equations, blackbox approaches based only on 
temperature measurements to physics-based models containing equations for all the processes 
involved or complete multilayer models based on an energy balance (Stewart, 2009; Zeinivand 
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and Smedt, 2009; Debele et al., 2010) have been used. In this study, daily snowmelt is estimated 
using the temperature based approach available in Generalized Watershed Loading Function 
(GWLF; (Haith et al., 1992) watershed model. 

Given that a relatively large number of GCMs that are presently available, using the results from 
all GCMs may result in an unreasonable number of watershed model simulations. To avoid this 
problem a subset of GCMs can be selected by GCM evaluation. Testing the GCM’s ability to 
simulate “ present climate” (including variability and extremes) is an important part of model 
evaluation (Randall et al., 2007a). In this study GCMs are evaluated by examining the skill of 
models in simulating present-day climate (Raisanen, 2007; Johnson and Sharma, 2009).  A 
number of studies have used methods such as skill scores, or other criteria statistics for evaluating 
the different meteorological variables available from GCMs simulations (Giorgi and Mearns, 
2003; Tebaldi et al., 2004; Murphy et al., 2007; Perkins et al., 2007; Randall et al., 2007b; 
Maxino et al., 2008; Johnson and Sharma, 2009). A good review of these methods available to 
evaluate the performance of GCMs is found in (Johnson and Sharma, 2009). No studies have 
focused on the evaluating the ability of GCM in simulating modeled snow accumulation and melt 
using skill scores.  

The objective of this study is to evaluate the ability of daily GCM-derived SWE to simulate 
daily observation-based SWE using a probability based skill score. Daily snow accumulation or 
snowmelt is estimated using the temperature based snow algorithm in GWLF watershed model. 

STUDY REGION AND DATA USED 

The study area encompasses a watershed area of about 4100 km2. It consists of six reservoir 
watersheds namely Cannonsville, Ashokan, Nerversink, Schoharie, Rondout and Pepacton (Figure 
1). These watersheds are part of the Eastern Plateau Climate Region of New York. The regional 
climate is characterized as humid continental with cool summers, cold winters, abundant 
precipitation and snowfall. It experiences a uniform distribution of precipitation throughout the 
year. Typically, total precipitation in the region is about 1000-1200 mm per year, with snowfall 
accounting for approximately 20 percent of total precipitation. In addition, orography influences 
the spatial distributions of precipitation and temperature (Frei et al., 2002; Burns et al., 2007). 

 

 

Figure 1. Study region. The six reservoir watersheds provide approximately 90% of NYC drinking water 
needs. 

For each of the six WOH watersheds, daily observed data for precipitation from National 
Climate Data Center cooperator stations was obtained from the Northeast Regional Climate Center 
(NRCC). Each watershed was broken into Theissen polygons based on the location of the nearest 
precipitation stations.  The proportion of the area of each polygon representing a precipitation 
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station to the total watershed area is the weight given for averaging the value from that station.  
Using this method the watershed average precipitation is calculated. Average air temperatures are 
derived from four stations measuring this variable, Cooperstown, Liberty, Slide Mountain, and 
Walton.  Each of these stations has been active since 1965 or earlier.  The averaging method 
includes the application of an environmental lapse rate to correct for elevation differences between 
the station and the mean watershed elevation and use of inverse distance squared weighting 
averaging of the four stations (NYCDEP, 2004). After processing the observed daily precipitation 
and average temperatures, a single time series for a variable and watershed is obtained and used in 
this study. The period of observed data used in this study is 1960-2000.   

GCM simulations are obtained from the World Climate Research Programme's (WCRP's) 
Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset. The daily baseline 
scenario (20C3M) GCM simulations are from 20 GCMs (Table 2), and for two meteorological 
variables (precipitation and average temperatures at the surface). A list of the GCM simulations 
(name and realization number), used in the study are provided in Table 2. The data from all the 
GCMs for the region surrounding the study region are extracted and interpolated to a common 2.5º 
grid using bilinear interpolation (this is implemented with NCAR Command Language 
www.ncl.ucar.edu).  

Table 2 Names of the Climate models, their versions, realization numbers, acronym used in the study. 
The GCMs are classified based on their performance in simulating the snow water equivalent are 

shown in different colors in column realization number. All snow simulations were made using baseline 
runs associated with these models 

S.N GCM I.D * Acronym  Country 

GCM 
name 

Realization number** 

1 BCCR-BCM2.0 bcc 01 Norway  
2 CCSM3 ncc 01,03,05,06,07,08,09 USA 
3 CGCM3.1(T47) cc4 01,02,03,04,05 Canada 
4 CGCM3.1(T63) cc6 01 Canada 
5 CNRM-CM3 cnr 01 France 
6 CSIRO-Mk3.0 cs0 01,02,03 Australia 
7 CSIRO-Mk3.5 cs5 01 Australia 
8 ECHAM5/MPI-OM mpi 01,04 Germany  
9 ECHO-G miu 01,02,03 Germany=Korea  
10 FGOALS-g1.0 iap 01,03 China 
11 GFDL-CM2.0 gf0 01 USA 
12 GFDL-CM2.1 gf1 02 USA 
13 GISS-AOM gao 01 USA 
14 GISS-ER gir 01 USA 
15 INGV-SXG  ing  01 Italt 
16 IPSL-CM4 ips 01,02 France 
17 MIROC3.2(hires) mih 01 Japan 
18 MIROC3.2(medres) mim 01,02 Japan 
19 MRI-CGCM2.3.2 mri 01,02,03,04,05 Japan 

*As provided by Lawrence Livermore National Laboratory’s Program for Coupled Model Diagnosis and 
Intercomparison (PCMDI): http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentatio n.php 
** realization number highlighted in yellow are classified as models having high skill scores, the red numbers 
represent the models classified as medium skill scorse and the numbers in black represent models having low skill 
scores. This classification is subjective 

METHODOLOGY 

The methodology followed in this study is shown in Figure 2 and explained below.  
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Figure 2. Flow chart showing the methodology for simulating observation-based and GCM-based SWE. 

SWE estimation using Generalized Watershed Loading Functions (GWLF) model 
Due to scarcity of measured snow data in the study area and comparable snow parameters in the 

GCM simulations, comparisons presented in this paper are based on simulated snow parameters. 
These simulations are driven using either observed daily mean measurement of air temperature 
and precipitation or daily GCM data for these variables from the GCM grid cell nearest to the 
study area and are referred as “observation-based” SWE and “GCM-based simulated” SWE 
respectively. 

GWLF is a lumped parameter hydrologic model coupled to simple water quality model and 
details of the model may be found in Haith et al (1992) and Schneiderman et al (2002). Runoff is 
further distributed by topographic index. GWLF is driven by daily precipitation and temperature 
data. For six reservoir watersheds, six separate GWLF model applications are driven using 
watershed averaged precipitation and air temperature, and  are calibrated and validated by 
comparing simulated and measured streamflow at the watershed outlet,. In the absence of snow 
measurements, these simulations are used to provide a surrogate for observed SWE and snowmelt 
corresponding to present day conditions. They are referred as “observation-based” SWE and 
snowmelt. 

In GWLF, snow water equivalent (SWE) at a given time (t), is a function of SWE at a previous 
time (t-1), snowfall [P(t)]  and snowmelt [Ps(t)] at time t (cm). If the mean daily temperature T(t) 
is less than or equal to 0°C precipitation is assumed to be snowfall. If   T( t) > 0°C, snowmelt 
Ps(t).is calculated based on equation 1.  

 
     

     (1) 
 

)(.)( tTMtPs 
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Snowmelt is a function of mean daily temperature and a snowmelt parameter or degree day 
factor (M) given in equation (1). M depends on basin geographical location, time of year, 
vegetation and topography (Maidment, 1993). The snowmelt degree day factor for the six 
validated models one for the six WOH watersheds are given in Table 3. The calibrated parameter 
varies between 0.29 and 0.48 based on the comparison of simulated and measured streamflow. 
They are within the range of values typical of  this region (Maidment, 1993). 

Table 3 Melt coefficients calibrated for the six WOH watersheds 

S.N Name of reservoir watershed Melt coefficient 
cm/day 

1 Ashokan 0.29 
2 Cannonsville 0.41 
3 Neversink 0.48 
4 Pepacton 0.39 
5 Rondout 0.41 
6 Schoharie 0.38 

 
The precipitation and average temperature obtained from GCM simulations were also input into 

each of the six calibrated GWLF models to obtain snowmelt and SWE for the various 
combinations of GCM/realizations. These simulations are referred to as GCM-based SWE. 

Estimation of probability density functions (PDFs) of SWE:  
The PDFs of SWE are estimated using “observation-based” and “GCM-based simulated” SWE 

for the months December to March (winter to early spring) using MatLab 
(http://www.mathworks.com). Six simulated time series of SWE were developed based on 
observed data (daily basin-wide averaged precipitation and air temperature) for each of the six 
watersheds. All the values in the six time series are used to construct the representative 
distribution in the observation-based PDF. The PDFs were also calculated for each reservoir 
watershed using daily grid cell air temperature data for each GCM / realization. 

To estimate the PDFs used in this study, we require bin sizes ( bS ) and number of bins ( bN ). For 
each variable, a common value of bS  is used for all analyses; bN  is then determined based on the 
range of values (equation 2).  bS  selected for this study are 0.5 mm/day for snow water equivalent, 
0.5 mm/day for snowmelt and 0.5°C for average temperature.  

 

bb SVVN )( minmax                                                                                            (2) 
 

where maxV  and minV  is the maximum and minimum value of the variable and vary for the 
different combinations. The frequencies of values within each bin (n) is then calculated for GCM-
based ( nFg ) and observation-based ( nFo ) data.  

Skill score (SS) 
The ability of the GCMs to estimate snowmelt and SWE was judged using the skill score (SS) 

developed by Perkins et al, (2007) which computes the empirical PDFs derived from observation-
based and GCM-based simulation. The advantage of this skill score is its simplicity and 
applicability across variables, spatial scales and seasons. For each bin n, in the SWE frequency 
distribution the minimum frequency associated with either the GCM-based ( nFg ) or observation-
based ( nFo ) data is recorded. SS is the summation of these minimum frequency values over all 
bins (equation 3).  

),min(
1

n

N

n
n FoFgSS

b




                                                                                         (3) 

The value of SS can range between 0 and 1. The SS is close to one when the modeled and 
observed PDFs are similar; close to zero if there is negligible overlap. The score is comparable 
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across variables and is easily interpreted. For SWE, each GCM/realization gets one SS. The skill 
scores are then ranked.  

RESULTS AND DISCUSSION 

The skill scores for snow water equivalent (SWE) are estimated for 41 GCM/realizations used 
in the study.  The ranks of the GCM are provided in Figure 3 where, the x-axis denotes the rank 
and y-axis the SS. The GFDL 2.0 (gf001) has the highest SS (0.93) and CCSM (ncc09) has the 
lowest SS (0.26).  Based on the SS, the GCMs are classified into three categories high, medium 
and low performance. The classification is based on the changes in the SS and is subjective. In 
Table 2, the GCMs and realization number which are classified as high, medium and low 
performance are differentiated by color. It can be observed that the SSs are generally consistent 
between ensemble members of each GCM, however in some cases they fall between adjacent 
classes and no GCM has one ensemble member in the highest performance group and one in the 
lowest performance group. The range of the SS in the three categories are high skill score: 0.87- 
0.93, medium skill score: 0.72 - 0.83 and low skill score: < 0.72 (0.26 - 0.72). 

 

Figure 3. The AR4 climate models are ranked based on average skill scores (SS) for snow water equivalent 
(SWE) for the season DJFM in each realization. The GCM with highest skill score is given rank 1, while the 
GCM with lowest skill score is given the last rank. The GCMs/ realization are classified into high, medium 

and low classes based on SS. 

GCM ensemble members with high skill score are gfdl2.0(gf001), ipsl(ips:01,02), 
csiro(cs0:01,02), cgcm3(T47)(cc4:02,04), gissaom(gao01), mricgcm(mri02, mri03), cnrm-cm3 
(cnr01). 

GCM ensemble members with medium skill score cgcm3(T47)(cc4:01,03,05), 
cgcm3(T63)(cc601), ECHAM (mpi:01,04), echo (miu: 01,02,03), ingv(ing01), mri-
cgcm(mri:01,04,05), ccsm3 (ncc:01,03,05,06,07,08), fgoals-g1.0(iap01), bccr-bcm2(bcc01). 

GCM ensemble members with low skill score miroc hires (mih01), miroc medres(mim:01,02), 
csiro3.5(cs501), giss-er(gir01), fgoals-g1.0(iap03), ccsm(ncc09). 

In Figure 4, the PDFs of SWE, snowmelt and air temperature for the three categories defined in 
Figure 3 are plotted. In Figure 4, a separate row is plotted for each variable and columns represent 
different performance class. In each panel, the range of the GCM-based PDFs (shaded region) is 
shown along with the observation-based PDF (bold line). For snowmelt and SWE (row 2 and 3) 
the x-axis is transformed using a natural log. These figures suggest that: 

The largest between-model variability, are found for models in low performance class and 
lowest between-model variability, are found for models in high performance class.  

For the three variables, the median and mean lines obtained from all GCM-based simulations 
are more representative to observation-based snowmelt, snow water equivalent and mean 
temperature for high performance class followed by medium and then low performance class. 

The mean and median lines in each class are closer to each other in high performance class 
when compared to low performance class. 
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The differences between the high and medium performance class is less when compared to the 
differences between medium and low performance class. 

From the basic statistics (such as mean, median, standard deviation, interquartile range) 
estimated for all the GCM-based SWE and observation-based SWE, it can be inferred that the 
mean statistics in the GCM-based SWE in high performance class were more representative of 
observation-based SWE when compared to the other two performance classes. 

 

 

 

 

Figure 4. The shaded region represents the variation in Probability Density Functions (PDFs) for average 
temperature, snowmelt and snow water equivalent (SWE) for the various AR4 climate models in the three 

performance classes considered in the study. The PDFs are estimated for the period 1962-1999 for the DJFM 
months. In each of the plots, the black bold line represents the PDF obtained using daily observation-based 
simulation for the study region. The red dashed line represents the median PDF and the red line shows the 

mean PDFs for the GCM-based simulation.  
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CONCLUSIONS 

Snowmelt runoff is an important source of water for New York City’s (NYC) water supply. The 
GCMs participating in the IPCC’s AR4 report are evaluated for their performance in simulating 
snow water equivalent in the water supply watersheds using probability based skill scores. In the 
absence of observed daily snow water equivalent (SWE) or comparable GCM simulated daily 
SWE, SWE is estimated using a simple watershed model, which includes a degree-day snow melt 
parameterization.  

Results show that SSs are generally consistent between ensemble members of each GCM. The 
GFDL 2.0 (gf001) has the highest SS (0.93) and CCSM (ncc09) has the least SS (0.26).  Based on 
the SS, the GCM ensemble members are classified into three categories high, medium and low 
performance. It is observed that the SSs are generally consistent between ensemble members of 
each GCM. The range of the SS in the three categories are 0.87- 0.93 for high skill score, 0.72- 
0.83 for medium skill score and <0.72 (0.26 - 0.72) for low skill score. 

The PDFs of snowmelt, SWE and mean temperature for the three performance classes show the 
largest between-model variability for models in low performance class. Differences between the 
mean and median from GCM-based PDFs and observation-based PDFs were also greatest in the 
low performance class.  

The statistics (such as mean, median, standard deviation, interquartile range) from the GCM-
based SWE simulation were more representative of observation-based SWE in high performance 
class when compared to the other two performance classes. 
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