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ABSTRACT

Lake-effect-snow-possible (LESP) days were identified for each of 29 climatological
stations in the lee of Lake Huron and Georgian Bay for the November to April winters of
1984-1988 wusing output from 0-24 hour and 24-48 hour forecasts by the Canadian
Meteorological Center (CMC) operational spectral Numerical Weather Prediction (NWP) model.
Twenty-four hour observed snow amounts on LESP days were separated into 5 ordered
categories. The distribution of snowfall on LESP days for the aggregate of the 29 stations
is centered on category 3, but the distributions for individual stations are centered on
categories 1 or 2. This suggests lake-effect snow occurrence and amounts are likely to be
over-forecast by meteorologists for even relatively small public forecast areas.

A recent non-parametric classification procedure known as "Classification and
Regression Trees (CART)" was used to classify the categorical snowfalls by predictor
threshold values in decision trees. Predictors were designed from the physics of lake-
effect snow formation and calculated from the NWP model output data on a 63 kn
interpolation grid. Predictors most frequently used by CART to create the decision trees
involved 1low-level divergence (convergence) at nearly every station, followed by
predictors related to air-water temperature difference. The method shows considerable
promise for timely many-site production of objective operational mesoscale guidance for 1
and 2, day forecasts of 24-hour lake-effect snow accumulation.

1. INTRODUCTION

Lake-effect snowfall is one of the challenging and important mesoscale forecast
problems around the Great Lakes. On occasion a great deal of snow falls in a 24 hour
period over small areas, with wide variation in amounts over relatively small distances.
It has been estimated that as much as one-half the annual snowfall around the shores of
Lake Michigan is due to lake effects (Braham and Dungey, 1984). A similar or even greater
~fraction appears to be the case around Lake Huron and Georgiarn Bay as well (Figure 1)

Peace and Sykes (1966) concluded that "while the formation of lake-effect bands is
caused by heating of the air by a warm lake, the location and movement of snow bands are
controlled by winds aloft". Thus lake-effect snow, while it is a mesoscale phenomenon, is
strongly controlled by characteristics of the synoptic scale environment in which it
occurs. This has enabled meteorologists to predict the occurrence of lake-effect snow in
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Figure 1: Top: mean annual snowfall (em) for 1951-1980 for southern Ontario, from
Crowe(1985), reproduced in Burrows (1990). Bottom: southern Ontario elevation
in 100's of meters.
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broad regions to the lee of large water bodies with good success by using output from
operational NWP models. However, the mesoscale details of the snowfall, such as band
movement and snow amounts at specific points are often not well forecast. There is little
objective operational guidance available to forecasters for mesoscale lake-effect snow
prediction, likely because the scale on which lake-effect snow occurs is well below the
resolution of current operational NWP models. Present forecast procedures in operational
weather offices generally rely on subjective manual or semi-computerized interpretation of
model output fields using decision tree methods and accumulated office experience (e.g.
Dockus, 1985; Niziol, 1987; Murphy, 1989). These methods, while useful for specific sites,
are too time-consuming to be simultaneously applied in an operational forecast mode for a
large number of sites covering broad, complicated areas. Research studies using mesoscale
models have appeared in the literature (e.g. Hjelmfelt, 1990; Lavoie, 1972), but these
have not to this author‘s knowledge, led to production of regular objective Zforecast
guidance in the field. A method for generating objective forecast guidance for lake-effect
snow using an operational WNWP model was developed by Dewey (1979a,b), but was never
implemented.

A growing number of public and private sector users are interested in timely, accurate
many-site forecast guidance for snow amounts within public forecast regions. Aware of
this, Burrows (1990) studied the feasibility of producing objective mesoscale forecast
guidance for 24-hour lake-effect snow amounts for 1-Day and 2-Day projection times for
climatological stations in the southern Georgian Bay region. "Perfect Prog (PP)" forecasts
of 24-hour snow amount in 5 categories were produced using multiple discriminant analysis
(MDA) . Using the MDA probabilities as predictors, the forecasts were tuned with a
statistical classification procedure known as Classification and Regression Trees (CART)
developed recently by Brieman et al (1984). CART establishes rules by which categorical or
continuous predictands can be classified in a decision tree by threshold values of user-
specified predictors. It is non-parametric (makes no assumptions about the statistical
distribution of the predictors), and will use both single predictors and linear
combinations of predictors offered to it.

It was suggested in the above work that while the tuned PP statistical forecasts
lacked the accuracy to be useful as guidance, there was considerable promise that better
forecasts could be generated if the CART procedure were more fully employed and if a
better predictor set were designed. The latter would be possible if NWP model output data
were used for derivation of predictors instead of analyzed observed data (i.e. "Model
Output Statistics (MOS) (Glahn and Lowry, 1972)" approach instead of PP approach). This
indeed turned out to be the case, and the resulting method for producing mesoscale lake-
effect snow forecast guidance will be implemented experimentally for use at the Ontario
Weather Center. This paper describes the development of the forecast system.

2. PREDICTAND

Daily snowfall data for the winters of 1984-1988 (1 November to 30 April, except to 25
March 1987 and to 8 April 1988) were gathered for 29 climatological stations to the lee of
Lake Huron and Georgian Bay shown in the left panel of Figure 2. {(The right panel is the
interpolation grid for NWP model data and is discussed in Section 3). A climatological day
at these stations is defined as 8&am today to 8am tomorrow. The total number of days
without missing data during the study periecd ranged from a low of 600 to a high of 643,
with about 633 days available at many stations. The data set was screened at each station
o separvate out "lake-effect snow possible" (LESP) days. These were defined as at least 12
hours inm a 24 hour period when the CMC NWP model forecast a local off-water 8350 mb wind
fetch and either a lake-850 mb temperature difference of at least 13 degrees C (dry

adiabatic), or 8 to < 13 degrees with upWar& vertical motion at /00 mb in the middle of
Leke Huron (which is always free of ice). Water temperature was taken from time-mean
charts published in Saulesleja (1986). Snow amount in cm at each station was divided into
5 categories: 1= O-trace, 2= >trace-5, 3= >5-12.5, 4= >12.5-22.5, 5= >22.5.
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Figure 2: Left panel: Location of climatological stations included in this study. Right
panel: NWP model output data grid points (solid circles), interpclation grid
points for calculation of predictors (crosses).

The top left panel of Figure 3 shows the fraction of days at each station that
qualified as LESP days when classified with Day 1 NWP forecast data (units days per
thousand, e.g. 455 means .455). Results are what would be expected, considering the
prevailing west to northwest winds over this region. The number of LESP days varies with
the fetch direction at each station. The maximum fraction of LESP days occurs to the lee
of central Lake Huron, with fewest occurrences at the northern and southern extremities of
Lake Huron, and occurrences decreasing with distance inland. Table 1 shows the highest
snow category that was observed at any of the 29 stations when a LESP day was observed at
any one of them. Little difference is seen between the two projection times. This suggests
the NWP model forecasts of the large scale flow in this region for 0-24 hours and 24-48
hours projection times tend to be consistent for LESP days. A normal distribution centered
on category 3 is seen for LESP days identified with both 00-24 hour (Day 1) and 24-48 hour
(Day 2) NWP model forecast data.

Table 1: The highest snow category (Cat) observed when a LESP day was
identified at any of the 29 stations, shown as a percent of total LESP days
for each category. Results are for LESP days determined by Day 1 and Day 2 NUWP
model forecast data.

Cat %Day 1 %Day 2

1 06.8 07.0
2 24.9 22.4
3 33.3 35.8
4 22.7 22.7
5 12.3 12.1

" A different story emerges from the results for individual stations. The remaining

panels in Figure 3 show the fraction of LESP days when snowfall occurred in categories 1-5
at each station. For the aggregate of stations it was seen in Table 1 that snow was
observed by at least 1 of the 29 stations on about 93% of the LESP days. However, Figure 3
shows that on roughly 25-65% of the LESP days at individual stations no snow fell (CAT 1)
or if snow did cccur, snowfall was not more than 5 cm (category 2) on roughly another 30-
50% of the LESP days (CAT 2). Thus the maximum number of snow occurrences on LESP days for
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Figure 3:
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LESP DAYS: number of days that "lake effect snow possible" (LESP) days were

identified with Day 1 (0-24 hr) NWP model forecast data; CAT 1,

., CAT 5

number of LESP days when 24-hour observed snow amount was in category 1 (0 -

trace), or category 2 ( >trace-5cm ), or category 3 ( >5-12.5 cm ), or
category & ( >12.5-22.5 cm ), or category 5 ( >22.5 cm ). Units days per

thousand days (e.g. 455 means .455).
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individual stations is centered on categories 1 or 2, even in the heart of the "snowbelt®
region to the lee of central Lake Huron and central Georgian Bay. (More than 90% of the
snow occurrences on LESP days were in these two categories inm the highly populated region
to the lee of southern Georgian Bay). Heavy snowfalls on LESP days at individual stations
are relatively rare: 0-10% for category & snowfalls and 0-4% for category 5 snowfalls. The
most occurrences of category 5 snow on LESP days at any station was only 8 in the 4 years.

The above results imply that over-forecasting the amount and occurrence of snow in
lake-effect storms for individual stations and small areas is likely to be a problem for
even relatively small public forecast areas. This is because the maximum snowfall will
occur over a small portion of a region, but a forecaster will temnd to predict the maximum
amount everywhere to be safe.

3. PREDICTORS

1200 UTC NWP model forecasts of wind, temperature, geopotential height, and vertical
motion at 6-hour intervals from 0 to 48 hours projection time were interpolated with a bi-
cubic spline algorithm to a mesoscale grid of about 63 km spacing over southern Ontaric
(shown in the right panel of Figure 2). The solid circles are locations of the NWP model
data (about 254 km resolution), the crosses are interpolated points. Data on the 63 km
interpolation grid can be thought of as representing the "between-grid-point” variation of
data on a 254 km scale, thus shoreline-water differential frictional effects on boundary
layer winds be poorly represented. We are therefore dealing with relations between
mesoscale lake-effect snow formation and upper air controls on the much larger synoptic
scale.

Predictors known or expected to be physically related to formation of lake-effect snow
were designed and calculated on the 63 km grid. Comprehensive recent discussions of the
meteorological parameters and features important in the process of lake-effect snow
formation can be found in Dockus (1985), Niziol (1987), Murphy (1989}, and Hjelmfelt
(1990). A total of 129 separate potential predictors were designed to accommodate the 24-
hour period of the predictand. These are derived from physical parameters shown in Tables
2 and 3. Lake water temperature and mean ice cover were estimated as space averages
surrounding the grid points from time-mean charts for periods of variable length during
the winter season in Saulesleja (1986). Low level divergence was calculated from
interpolated east-west and north-south (u and v) wind components by calculating local
small-scale derivatives at each interpolation grid point.

4. CART

CART was used to find predictand classification trees for each station using Day 1 and
Day 2 NWP model forecasts of predictors. Trees were created with the basic 129 predictors
for 28 of the 29 stations (statiom 27 had only 18 LESP days). For stations where only 1 or
2 cases of the rarest category occurred, those observations were classified at the next
lowest category before CART was vun. Since it is a recent development and is not widely
known in meteorological circles, a brief description of CART and its use in this study
follows. For greater detail the reader is asked to refer to Brieman et al (1984).

CART is given a data base consisting of predictand and predictor values which it uses
to establish a decision tree that classifies the predictand. Computer output from the CART
program for Day 1 at station 19 (Paisley, Ontario) is shown in Figure 4. The predictand

was. snow.categorv . {1-5). on . LESP 4 o The "Tras egquen ol wummarv.chows CART £i foun &
tree that classified all the data perfectly (Tree 1 with 65 Terminal Regions), then began
"pruning” "nodes" in the "weakest links"™ up from the bottom of the tree until 1 tree
remained (Tree 12). Tree 12 would assign the "initial class assignment", which is the
category which gives the lowest misclassification cost (.614) if all data were classified
as a single category (2 here). This will be the most common category if unit
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Table 2: Physical parameters important for lake-effect snow production.
Operations “av, mx, ma, ch" mean respectively: average value, maximum value,
minimum value, and change between end and beginning, in a 24-hour period.
Operation N& is the number of 6-hour times within a 24-hour periocd (0-5) that
a specified condition applies. Location identifiers such as "65, 68, 88~
denote points (I=6,J=5), (I=6,J=8), (I=8,J=8) in Figure 2, respectively. "loc®
denotes station location.

1. lake - 850 mb temperature difference. (av, mx, mn at 6£8)

2. 500 mb temperature. (mn at 68)

3. ice cover. (percent).

4. lake - 850 mb temperature difference plotted against lake - 700 mb
temperature difference [in TFigure 5 of Niziol (1987), define an index:
O=outside graph, l=conditional, 2=moderate, 3=extreme]. (av, mx, mn, ch, N6 of
index value at £8).

5. 1000 mb wind direction. (av, ch at 65, 68, 88).

6. 850 mb wind direction. (av, ch at 65, 68, 88y.

7. 700 mb - 1000 mb wind direction difference. {(av, mx, mn, ch, N6 at 65, €8,
88).

(8. 700 mb - 1000 mb wind direction difference in two ranges: 0-30 degrees, 30-
60 degrees. (N6 at 65, 68, 88)

9. 850 mb wind speed. (av at 65, 68, 88).

10. 1000 mb wind speed in 12 direction segments 360-30 degrees, 30-60 degrees,

., 330-360 degrees. (av at loc).
11. simultaneous positive vorticity advection at 500 mb, 700 mbk, 850 mb. (N6
at 68).
12. 500 mwb advection of absolute vorticity. (av, mx at 68).
13. 700 mb vertical velocity. (av, mx, mn, ch 65, 68
14. 700 mb temperature advection. (av, mn at 68).
15. 1000 mb divergence within lines and areas defined in Table 3. (av)
16. 1000 mb divergence within lines and areas defined in Table 3. (N6 of min
for all J=1-13 at each I within a specified line or area, summed over each T
within that line or area)
17. [700 mb + 1000 mb] divergence within lines and areas defined in Table 3.
{(av).
18. 700 mb wind maximum for all J=1-13 in Figure 2 occurs within strips [I=2-
&1, [I=4-6], [I=6-8]. (N6 in each strip).
19. 500 mb low center vicinity of James Bay. (yes or no).
20. 850 mb wind direction at 4.9 is between 280 degrees and 340 degrees and
direction at 4.9 minus direction at 9.7 is at least 20 degrees. (av, Né6).
21. times "fetch importance index" (1 to 3) defined arbitrarily in 4 local
direction sectors for each station from 850 mb wind direction]. (N6 of index
values).

Iable 3: I and J values in Figure 2 for horizontal and vertical space averages
in divergence predictors (Pred) in Table 2. Div0l - 13 are averaged over
ranges of I and J in Figure 2 (e.g. Div0l is calculated over the area I= & to
12, J=4 to 10, and Div06 along the line I=4 to 9, J=8): Divié - 18 are
calculated over diagonal lines (e.g. Divl4 is calculated from the points
I=4,J=9 to 1I=6,J=8).

Pred I J Pred I J Pred I J Pred I J
Div0l 4-12 4-10 Div0é 4-9 8 Divili 9-12 4-6 Divid 4.9 6,8
Div0?2 5-7 4 Div07 4-9 9 Divi2 9-1 7-9 Divls 5,8 6,6
Diw0 3o B 5 BivO8bst 16 Divi e Foesee I TE 5766 TS
Div04L 4-7 [ Div09% 7-9 3-5 Divl7 7,9 8,8
Div05 4-9 7 Divi0 7-9 6-8 Divl§ 7.8 8,7
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misclassification costs are assigned. The final tree selected is Tree 5, the one which had
the minimum "cross-validated cost" relative to Tree 12. If no tree structure were found
with a cross-validated cost less than 1, then Tree 12 would have been selected.

|
|

- o TREE SEQUERCE

TERHINAL CROSS-VALIDATED RESUBSTITUTION COMPLEXITY
TREE  NODES RELATIVE COST RELATIVE €OST PARAHETER
1 65 0.97  #/- 00047 0,00 0.000E400
2 35 0.9l  #/- 0.048 0017 0.353E-02
3 28 0.91 +/- Qo048 0.25 0,703E~02
& 19 0.90 /- 00048 037 0.820E-02
5 13 0.89 +/- 0,048 047 0.105E~01
6 11 0.91  +/- 0.048 051 0.123E-01
7 8 0.95 ¢/- 0048 0.58 0,140E-01
8 5 0.92  #/~_ 00048 00,67 0.176E-01
g % 092 %7-0.0%E 0,71 0.281E-0]
10 3 0.94 +/- 0.048 077 0.351E-01
it 2 0096  +/~- 04047 0.86 0.562E-01
12 1 1.00 ¢/~ 00047 1.00 0.842E-01
INITIAL MISCLASSIFICATION COSY = 0.614
INITIAL CLASS ~ASSIGNHENT = 2
________________________ .
1
-4 D et SO Lt
1 1 I
+==3==2 e ——— fpoe ————— #m—=1l-—-e
1 1 1 1 I
T T TR REE = s etttk 3 =TSR EEE F=T 2= ST
1 I I I f
fm————t LRl el 3 G-+
1 ! I I I 1
TERMINAL REGEONS
1 2 3 4 5 6 7 8 k) 10 11 12 13
Figure 4: Tree sequence summary and classification tree diagram for Tree 5 found by CART

for LESP days classified with Day 1 (0-24 hr) NWP model forecast data for
Station 19 in Figure 2.

The cross-validated relative cost (.89 +/-.048 for Tree 5) can be thought of as a
wgkill score with respect to climatology" for each tree. A ten-fold cross-validation
method was used here to evaluate the cost of each tree when searching for the optimally-
pruned tree. This works by splitting the four-year "learning sample” into ten "cross-
validation sub-samples”, each containing 90% of the learning sample and about the same
distribution of data in the categories. For every "complexity value" (a number inversely
proportional to the number of nodes) reached by the main tree as it is pruned, CART takes
each cross-validation sub-sample and grows "“auxiliary trees" up to the complexity value
reached by the main tree. It then evaluates the misclassification cost of each auxiliary
tree by running down the tree the 10% of data not contained in its cross-validation sub-
sample and storing the results in a "cross-validation classification matrix". C(Cross-
validation approximates a test of the main decision tree with an independent data set in a
conservative manner (misclassification costs are over-estimaled because the full learning
sample is not used to grow the auxiliary trees). It is recommended for small data sets or
data sets that are sparse in some categories, such as categories 4 and 5 in this study.
(For data sets with relatively large numbers of cases in each category, one can set aside

a specified. fraction . of the data as an independent set on which to evaluate the

misclassification cost of the main tree as it is grown).

Three tree construction rules for splitting the samples in the nodes were tested:
"gini, twoing, and ordered twoing". The reader is referred to Brieman et al (1984) for a
full explanation of these terms. "Ordered twoing", which treats the decision in each node
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as a choice between two ordered classes when splitting cases to the left or to the right,
seemed appropriate here since snow amount increases with category number.

Table 4 shows the decision rules CART found for segregating cases in the nodes, and
the data populations in the Terminal Regions (final classification mnodes), for the
classification tree diagram in Figure 4. In Node 1, events with greater snow amounts
overall are sent left into Node 2 while events with smaller overall snow amounts are sent
right into Node 10. The test for sending data left or right in Node 1 is based on a linear
combination of three predictors. The rules are physically realistic. A leftward split into
Node 2 occurs for events where, relative to all the cases, the 700 mb-1000 mb wind
direction change over southern Lake Huron between is 0 and 30 degrees for a relatively
large portion of a 24-hour period, 24-hour average low level convergence over southern

Table 4: First part: Decision tree rules found by CART for splitting the nodes
in the Day 1 learning sample for station 19 for the classification tree
diagram shown in Figure 4. Classes assigned to cases going left or right are
shown for each node, with final classification categories in Terminal Regions
highlighted in bold. Predictors are coded to follow the explanation in Tables
2 and 3. For example: #8/0-30/N6/68 means predictor number 8, 0-30 degree
range, operation N6, calculated at grid point 68; #15/02/Av means predictor
number 15, Div02 in Table 3, operation Av. Units of some quantities are shown,

divergence units are 10-6 s 1, vorticity advection units are 10-11 5-2, Second
part: data populations in terminal regions in Figure 4.

Decision Rules:

Node 1: IL~2 R=l : split left if { -.613%[#8/0-30/N6/68]
+.553%[#15/02/Av] -.563%[#1/Mx] ) <= -12.0
Node 2: 1L=2 R=3 : split left if { -.251%[#15/02/Av]
+ .585%[#1/Mx] -.222%[#10/270-300]

+ .738%[#11] ) <= 14.8
Node 3: L=2 R=3 : split left if [#7/Mn/68] <= 51.32 degrees
Node 4: 1=4 R=3 : split left if [#5/AV/68] <= 306 degrees
Node 5: L=3 R=4 : split left if [#2 <= -40.7 degrees C
Node 6: L=3 R=5 : split left if [#10/270 300]) <= 2.15 ms~
Node 7: L=4 R=3 : split left if [#10/270-300] <= 10.9 ms-1
Node 8: L=2 R=3 : split left if [#13/Ch/65] <= 3.05 mb hr-l
Node 9: L=2 R=3 : split left if [#14/Av/68] <= .05 degrees C hr-1
Node 10: I~1 R=2 : split left if [#1/Av] <= 20.1 degrees C
Node 11: L=1 R=2 : split left if [#20/Av] <= 32.0 degrees
Node 12: L=2 R=1 : split left if [#13/Mn/68] <= -8.15 mb hr-1

Data Population In Terminal Regions:

Terminal Category
Region Class 1 2 3 4 5
1 2 15 51 11 1 1
2 3 1 06 4 0 O
3 3 o 1 5 0 0
4 5 0 0 0 0 5
5 4 2 7 5 24 1
6 3 1 0 4 0 O
7 2 2 9 2 2 0
8 3 0 0 4 0 O
9 3 0 1 14 0 1
10 z 7L
11 1 60 19 4 0 O
12 2 1 66 0 0 O
13 2 1 9 0 0 O
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Lake Huron was relatively large, and a relatively large 24-hour maximum water-850 mb
temperature difference occurred over mnorthern Lake Hurom. In Node 2, events with
relatively greater low-level convergence, relatively large water-air temperature
difference, relatively large local 1000 mb wind speed in the 270-300 degrees sector, and
relatively greater positive vorticity advection over northern Lake Huron, are sent right
into Node 4. Cases in the remaining nodes are sent to the left or right based on a test of
a single variable. The category 4 and 5 snow cases fall into Terminal Region 4 ox 5 based
on tests of 500 mb temperature, and 1000 mb wind speed and directiom.

The learning sample data populations in the terminal regions allow a statement of
confidence to be made about the classification forecast assigned te the node, and allow
for less specific forecasts to be made. For example in Table 4, if the predictor values
cause a case to Ffall down the tree into Terminal Region 4, a forecast of category 5 snow
is made with 100% confidence for station 19. However, if the predictor values cause a case
to fall down the tree intc Terminal Region 11 we can make a forecast of "no snow" with 72%
confidence, or "no more than 5 cm of snow" with 95% confidence, or "smowfall will not
exceed 12.5 cm" with 100% confidence.

Table 5 shows the learning sample and cross-validation matrices which resulted from
segregating the data for station 19 by the rules given in Table 4. Differences in the
total number of cases in each category between Days 1 and 2 occurred since the number of
days which qualified as LESP days wvaried due to differences between the NWP model
forecasts of the synoptic scale flow for 0-24 hours and 24-48 hours for the same day. The
fit of the data in the learning sample by CART shown in Table 5 appears to be very good,
although the cross-validation matrices are less impressive but still reasonable. The
category with the maximum number of cases in each predicted category matches the correct
observed category in all the matrices with only one exception. The high degree of matching
was typical for every station for as many categories as CART would fit, and is a desirable
attribute.

Table 5: Learning sample and cross-validation sample classification matrices
for Day 1 and Day 2 forecasts for station 19 (Paisley, Ontario).

Day 1
Learning Cross-Validation
Observed
Class -~-------- > 1 2 3 & 5 1 2 3 4 5
Pre- 1 60 19 4 0 O 47 36 9 0 O
-dic- 2 22 82 14 3 1 28 57 24 11 1
-ted 3 2 2 31 0 1 11 12 17 10 1
4 2 7 5 24 1 0 5 4 6 3
Class 5 ¢ 0 0 0 5 6 o0 0 ¢ 3
Day 2
Learning Cross Validation
Observed
Class --------- > 1 2 3 4 35 12 3 4 5
Pre- 1 81 13 2 0 O 55 24 6 2 O
-dic- 2 i1 90 12 5 0 34 56 18 10 1
-ted 3 4 5 39 11 5 6 206 21 9 2
4 0 0 2 10 O i1 & 8 5 2
Class 5 0 o 0 0 3 0 2 2 0 3

In the majority of cases CART found trees that classified most or all of the observed
categories at each station, to or within 1 standard deviation of the lowest cross-
validated relative cost. However, CART could not find low-cost trees for some stations
which had one very dominant snow category (usually category 1). For these cases a "second
attempt®, based on an idea described in Burrows(1990) for improving predictand-predictor
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fits by MDA, was tried in an effort to take advantage of non-linear predictand-predictor
relationships that might be present. Ten predictors were chosen from node paths that
classified data up to the maximum observed category in trees whose cost was too high (more
than one standard deviation above the minimum cost, and often with a large number of
nodes). Squares, cubes, natural logarithms, and cross products of the 10 predictors were
added to the basic predictor set, then CART was re-run with the enhanced set of 204
predictors. The limit of 10 predictors was arbitrarily imposed to limit the number of
predictors in the enhanced set. The result was substantially lowered misclassification
rates for several stationms.

5. RESULTS

a. Classification Trees

A summary of the results for Day 1 and Day 2 classification trees appears in Table 6.
CART found trees which classified all the observed snowfall categories at 14 of the 28
stations (50%) for Day 1 forecasts and 9 of the 28 stations (32%) for Day 2 forecasts.
Trees that classified to within 1 category of the maximum observed category were found at
26 of the 28 stations (93%) for Day 1 forecasts and 25 of the 28 stations (89%) for Day 2
forecasts. About 84% of the trees for Day 1 and Day 2 had cross-validated relative costs
less than or equal to 1 (i.e. skill as good or better than climatology). This was
accomplished with trees having 5-15 nodes at most stations, which is reasonably few. The
cross-validated misclassification costs averaged .50 for both Day 1 and Day 2 forecasts,
while the misclassification costs for the learning trees were .20 for Day 1 forecasts and
.23 for Day 2 forecasts. (The cross-validation misclassification costs may seem high, but
we should recall that cross-validation will over-estimate the true cost of using the trees
with independent data because the auxiliary trees were grown with only 90% of the data.
The true costs if the trees were applied to independent data will be somewhere between the
cross-validation sample and learning sample misclassification rates, and hopefully are not
too far off the latter). As expected, the node-splitting rule that gave the lowest
misclassification costs for most stations was "ordered twoing" (32 of 56 trees).

Table 6: For each station (Stn) in Figure 2: maximum category observed (Cats
Obsv); maximum number of snow categories classified by CART trees, to within 1
standard deviation of minimum cross-validated relative cost (Cats Fcst);
cross-validated relative cost (CV Cost); misclassification costs of auxiliary
trees grown from cross-validation samples (CV Miscl Cost) and from the full
learning sample (Lrn Miscl Cost).

Day 1 (0-24 hours) Day 2 (24-48 hours)
Cats Cats (@Y cv Lrn Cats Cats cv cv Lrn
Obsv Fcst Cost Mscl Mscl Obsv Fecst Cost Mscl Mscl

Stn Cost Cost Stn Cost Cost
1 4 4 1.00 .55 .17 1 4 4 .86 .46 .09
2 5 5 .88 .55 .11 2 5 4 .83 .53 .25
3 3 3 1.07 .54 .14 3 3 3 1.07 .44 .08
4 5 4 .82 .50 .20 4 5 4 .99 .63 .33
5 5 5 .83 .55 .14 5 5 5 .92 .61 .22
6 5 4 .76 .48 .25 6 5 4 .85 .54 .20
7 4 4 1.01 .48 .10 7 4 4 .99 .50 .l4
8 5 5 .93 .56 .20 8 5 5 .83 .49 .24
9 5 5 .93 .54 .18 9 5 4 1.00 .54 .28
10 5 4 .90 .53 .17 10 5 4 .93 .52 .33
11 5 5 1.02 .56 .25 11 5 5 1.02 .55 .21
12 5 4 1.03 .44 .26 12 5 4 .90 .39 .15
13 4 3 .94 .41 19 13 4 3 1.03 .43 .16
14 5 4 .83 .53 .28 14 5 4 .88 .56 .28
15 5 4 .85 .52 .24 15 5 3 .83 .49 .28
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Table 6 (contd):

Day 1 (0-24 hours) Day 2 (24-48 hours)
Cats Cats cv (0% Lrn Cats Cats cv CV Lrn
Obsv Fest Cost Mscl Mscl Obsv Fest Cost Mscl Mscl

Stn Cost Cost Stn Cost Cost
16 5 4 .86 .53 .20 16 5 4 .92 .54 .18
17 5 5 .90 .53 .26 17 5 4 .86 .52 .34
18 4 4 .82 .51 .15 18 4 4 .86 .53 .15
19 5 5 .89 .55 .29 19 5 5 .83 .52 .24
20 5 4 .88 .46 .19 20 5 4 .91 .51 .28
21 4 4 .85 .42 17 21 4 4 1,10 .53 .13
22 5 5 .97 .55 .17 22 5 4 .98 .56 .34
23 4 4 1.11 .40 .12 23 4 3 .94 .33 .14
24 5 4 .84 46 .34 24 5 4 .97 .52 .30
25 4 3 1.00 .48 .23 25 4 3 .98 .47 .34
26 4 3 .79 .46 .13 26 4 3 .93 .54 .22
27 - - - - - 27 - - - - -
28 5 3 .87 .55 .08 28 5 .84 44 (17
29 5 3 .97 .45 .26 29 5 3 .83 .37 .28

CART gives an ad-hoc ranking of variable importance on a scale of 0-100 after the
trees are constructed. Predictors related to low-level divergence were ranked among the
most important predictors more frequently than any other types of predictors at nearly
every station. The location of the line or area of this divergence was frequently upstream
from each station, although low-level divergence (convergence) in the vicinity of Lake
Ontario downstream from stations over southern and central Lake Huron was important as
well. The importance of low-level convergence lines to the movement and location of lake-
effect cloud bands was noted by Peace and Sykes (1966) and recently by Murphy (1989). The
next most frequently picked set of predictors were those measuring the degree of ailr-water
temperature difference, which is well known to be the primary mechanism for formation of
lake-effect cloud bands.

b. Areal consistency

Figure 5 shows the observed snowfalls and residuals (observed category minus forecast
category) for Day 1 and 2 classifications for a period of heavy lake-effect snowfall (5-6
January 1988). For the residuals a "0" is a perfect result, and a "*" denotes a station
where the local 850 wind direction was not off-water for at least 2 of the four 6-hour
intervals in a 24-hour period (i.e. non-LESP day). There is a preponderance of "0’'s" and
"t+/- 1's" for all the residuals for both Day 1 and Day 2 classifications. Of course, no
system is perfect so there are a few 2's and 3's (but no 4's). Overall, the CART
classifications for individual LESP days preserved the areal patterns of snowfall rather
well in both Day 1 and Day 2 forecasts, even though the classification trees were found
separately for each station. There were many other examples which verified this.

6. CONCLUSIONS

The need for detailed forecast guidance and careful assessment of the particulars of

“the synoptic situation on LESP days is clear: Analysis of the occurrence of snow for-a
four-year period at 29 stations in the lee of Lake Huron and Georgian Bay on "lake-effect
snow possible (LESP)" days suggests that snow occurrence and amounts for individual
stations and small areas are likely to be over - forecast in public forecasts, even in the
heart of the "snowbelt".
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Figure 5:  For. 5-6 January 1988: Observed snow categories and difference between forecast

and observed snow categories for Day 1 (00-24 hr) and Day 2 (24-48 hr)
forecasts.
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The classification-tree results show the CART-based MOS method outlined here has
considerable promise for timely many-site production of wuseful, areally consistent
objective operational mesoscale guidance for 1 and 2 day forecasts of 24-hour lake-effect
snow amount. The trees had good skill for both 0-24 hour and 24-48 hour periods in
classifying the category of snow occurrence at individual stations, given that a LESP day
was expected. The node-splitting decision rules found by CART were in most cases easy to
interpret physically and are a useful tool for insight into physical processes important
in the formation and prediction of lake effect snow. Once obtained, the trees could be run
on a local computer system to make forecasts if the required NWP data were communicated
from a central mainframe computer. The trees are easy to use and could be portable to
other NWP models by tuning predictor values from model output generated during a period of
a few months when two model versions overlap.

An explanation of the CART method and its use here is given in Section 3. A parallel
approach to an idea described in Burrows (1990) for including certain non-linear functions
of important predictors into the predictor selection process was tried and resulted in
significant reductions of misclassification rates for several stations.

Low-level divergence (convergence) induced by events in the upper air, usually located
upstream and along lines or zones over the water, is the primary parameter controlling
snow amount on days when lake-effect snow is possible.
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