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ABSTRACT 

Binary snow maps represent pixels as simply snow-covered or snow-free and their accuracy is 
dependent on the spatial resolution of the remotely-sensed images used in creating them. 
Fractional snow cover (FSC) mapping overcomes the problem of low spatial resolution of images 
by assigning estimated snow fraction to each pixel. There are two commonly used methods for 
estimating FSC from Moderate Resolution Imaging Spectroradiometer (MODIS). One is linear 
spectral un-mixing while the other employs the empirical relationship between Normalized 
Difference Snow Index (NDSI) and snow fraction. Machine learning is an alternative to these 
methods for estimating FSC. Advantages of Artificial Neural Networks (ANNs) are that they can 
easily incorporate auxiliary information such as land cover type and are capable of learning non-
linear relationships. This study trains a feed-forward neural network with backpropagation to 
estimate FSC from MODIS surface reflectance, Normalized Difference Snow Index (NDSI), 
Normalized Difference Vegetation Index (NDVI) and land cover. Independent estimates of FSC 
for training and validation are created from Landsat Enhanced Thematic Mapper Plus (ETM+) 
binary snow cover maps. The developed ANN compares favorably to the standard MODIS FSC 
product. However, it overestimates FSC at low FSC and underestimates it at high FSC. The 
average Root Mean Square (RMS) error of the ANN FSC for three independent Landsat ETM+ 
scenes is 11.93%.  
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INTRODUCTION 

Snow cover extent is a parameter in both hydrologic and climate models (Rango, 1996; Roesch 
et at., 2001) and it is also monitored to supply information for climate change studies (Lemke et 
al., 2007). Snow cover information can be collected in situ. However, in situ methods remain 
problematic for measuring snow cover extent as the site where snow is sampled may not be 
representative of the entire study area, and the sampled site only gives snow cover state at a 
particular location and does not provide information about whether the surrounding terrain is also 
snow-covered (Bales et al., 2006). Adverse weather conditions in snow-covered areas and the 
remoteness of these areas often make manual collection of consistent snow cover information 
physically impossible (Derksen and LeDrew, 2000). 
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Spaceborne and airborne remote sensing offers an alternative to in situ collection of snow cover 
extent measurements. Using satellite remote sensing for monitoring snow cover is advantageous 
because it offers consistent data collection over a large area. In this respect, long-term studies and 
environmental models have a continuous supply of snow cover measurements (König et al., 
2001).  

Traditional snow cover maps are binary which means that pixels are mapped as either snow-
covered or snow-free. The current standard algorithm for producing global daily snow maps from 
Moderate Resolution Imaging Spectroradiometer (MODIS) maps snow primarily using Nor-
malized Difference Snow Index (NDSI) as a threshold; a Normalized Difference Vegetation Index 
(NDVI) threshold is, also, used to improve snow detection in forests (Hall et al., 1995, 2002; 
Klein et al., 1998). 

Fractional Snow Cover Mapping 
Fractional snow cover (FSC) mapping overcomes the limitations of low spatial resolution of 

daily images such as those provided by MODIS by representing snow cover in each pixel as a 
percentage of the area of the pixel. Since a pixel integrates the spectral information of the whole 
area viewed, the snowpack cannot be spatially located within the pixel. However, it is possible to 
estimate the percentage of snow in a pixel. This is an improvement over traditional binary snow 
cover maps which represent a pixel simply as either snow-covered or snow-free. Typically in 
binary snow maps, a pixel is classified as containing snow if approximately fifty percent of its area 
is snow-covered (Hall et al., 2002). This may introduce significant error in the estimations of the 
spatial extent of snow cover, which in return may cause erroneous results in hydrological (Rango, 
1996) and General Circulation Models (GCMs) (Roesch et al., 2001). Even slight variations in 
FSC produce significantly different results in GCMs and consequently, incorrect estimates of FSC 
result in biased climate predictions (Niu and Yang, 2007). 

A pixel contains the spectral information from all surface components within a sensor’s 
Instantaneous Field Of View (IFOV). Linear mixture analysis is performed with the assumption 
that the spectral information within a pixel is a linear combination of the surface components 
within that pixel and that the weight of each component equals the proportion of the pixel’s IFOV 
that contains the component (Jensen, 2005). Endmembers are idealized, pure spectral signatures 
for a type of surface (Schowengerdt, 1997). The performance of the spectral un-mixing model 
depends on availability of complete and accurate endmembers which are usually stored in a 
spectral library referenced by the model during processing.  

Linear spectral unmixing has been widely applied in snow fraction mapping (Nolin et al., 1993; 
Simpson et al., 1998; Shi, 1999; Simpson and McIntire, 2001; Vikhamer and Solberg, 2002, 2003; 
Painter et al., 2003, 2009; Romanov et al., 2003; Foppa et al.; 2004, Hongen and Suhong, 2004; 
Metsämäki et al., 2005). These applications require an extensive endmember library for success. 
Methods differ on how endmembers are collected and how the mapping algorithm determines 
which endmembers should be included in un-mixing each pixel to determine FSC.  

Establishing an empirical relationship between satellite reflectance and FSC to determine FSC is 
another approach. A method developed for the Terra and Aqua MODIS instruments (Salomonson 
and Appel, 2004, 2006) uses Normalized Difference Snow Index (NSDI) constructed from 
MODIS bands 4 and 7, which record reflectance in the green and short-wave infrared ranges of the 
spectrum, respectively. A statistical linear relationship between NDSI and snow fraction in a 
MODIS pixel is established by using higher resolution Landsat snow maps as an estimate of true 
snow fraction. This method is currently used to create the standard MODIS FSC snow cover 
product. 

Artificial Neural Networks (ANNs) are a machine learning technique which can learn 
relationships between specified input and output variables. Neural networks constitute an 
information processing model that stores empirical knowledge through a learning process and 
subsequently makes the stored knowledge available for future use (Haykin, 1999). Often the 
learning process in ANNs is called training. Various remote sensing applications have utilized 
ANNs for subpixel estimation of a number of surfaces types (Foody et al., 1997; Tatem et al., 
2002; Shabanov et al., 2005; Lee and Lathrop, 2006). Advantages of neural networks are that 
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there is no need to assume a linear relationship between surface components in a pixel, end-
members are not necessary, and auxiliary information such as land cover is easily incorporated.  

Study purpose and objectives 
This study investigated if ANNs were applicable to successful mapping of snow fraction. To 

accomplish this aim, a neural network was trained and tested on fifteen Landsat Enhanced 
Thematic Mapper Plus (ETM+) training areas within North America representative of the different 
land covers typical of the snow-covered portions of the Northern Hemisphere. Inputs to the 
network were the seven 500-m MODIS land surface reflectance bands provided in the Surface 
Reflectance Daily L2G Global 1km and 500m (MOD09GA) product (Vermonte and Kotchenova, 
2008), NDSI and NDVI which were calculated from the reflectance bands, and land cover in the 
International Geosphere-Biosphere Programme (IGBP) classification scheme from the MODIS/ 
Terra Land Cover 96 Day L3 Global 1 km ISIN Grid (MOD12Q1) product (Hodges, 2009) (Table 
1). A reference snow fraction was determined by applying the SNOMAP (Hall et al., 1995) 
algorithm to higher resolution Landsat ETM+ images. The neural network was trained on eleven 
Landsat snow maps representative of different land covers and tested on three additional Landsat 
snow maps. 

Table 1: Input to the ANN 

MOD09GA Band 1 Reflectance at 620-670 nm 
MOD09GA Band 2 Reflectance at 841-876 nm 
MOD09GA Band 3 Reflectance at 459-479 nm 
MOD09GA Band 4 Reflectance at 545-565 nm 
MOD09GA Band 5 Reflectance at 1230-1250 nm 
MOD09GA Band 6 Reflectance at 1628-1652 nm 
MOD09GA Band 7 Reflectance at 2105-2155 nm 

NDSI (Band4–Band6)/(Band4+Band6) 
NDVI (Band2–Band1)/(Band2+Band1) 

MOD12Q1 IGBP Land cover Classification 

METHODOLOGY 

This study used a feed-forward neural network trained in a supervised manner through 
backpropagation. During backpropagation training, the network was initialized with random 
weights and learning involved adjusting the weights so that the error between the generated output 
and the supplied ‘true’ or target output was minimized.  

The performance of ANNs trained in a supervised manner was closely related to the quality of 
the data set used for training (Priddy and Keller, 2005), and therefore a training data set should be 
representative of the pixels that it would be used on. In the current study, it was important that the 
training examples were not biased towards any land cover but instead adequately represented the 
land covers typical of mid- and high-latitude environments. The training set should also not be 
biased towards particular snow cover fractions.  

Landsat Scene Selection and Preprocessing 
Selection of training and test scenes was restricted to partially snow-covered images acquired 

within North America during different months of the year. The main objective in selecting the 
training scenes was to represent land covers typical of the snow-covered mid to high latitudes. The 
land cover classification system used in selecting samples combined the seventeen IGBP land 
cover classes into eight: evergreen forest, deciduous forest, mixed forest, mixed agriculture, 
barren/sparsely vegetated, tundra, grasslands/shrublands and wetlands (Table 2). A similar ap-
proach was used previously by Hall et al. (2001) to assess the accuracy of the MODIS snow 
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product. These eights classes were subsequently combined into three to assess the accuracy of the 
ANN FSC algorithm. 

Table 2. Land cover classes used in the study 

IGBP Land Cover Classes 
Reclassified For 

Sampling 
Reclassified For 

Testing 
Evergreen needleleaf forest 
Evergreen broadleaf forest 

Evergreen Forests 

Deciduous needleleaf forest 
Deciduous broadleaf forest 

Deciduous Forests 

Mixed forests Mixed Forests 

Forest 1 

Croplands 
Urban and built-up 

Cropland/natural vegetation mosaic 
Mixed agriculture Mixed agriculture 2 

Barren/sparsely vegetated Barren/sparsely vegetated 
Woody savannas 

Savannas 
Tundra 

Closed shrublands 
Open shrublands 

Grasslands 
Grasslands/shrublands 

Permanent wetlands Wetlands 

Non forest 3 

Permanent snow and ice n/a n/a 
Water n/a n/a 

 
The Landsat ETM+ scenes were selected for minimal cloud cover and were acquired between 

2000 when MODIS became operational and 2003 when the Landsat ETM+ Scan Line Corrector 
(SLC) failed degrading image quality (National Aeronautics and Space Administration, 2009). 
Three of the selected scenes were previously used in developing the NDSI snow fraction method 
for mapping FSC (Salomonson and Appel 2004, 2006). 

Landsat ETM+ images were obtained free of charge at a Level 1T processing from the United 
States Geological Survey (USGS) Earth Resources Observation and Science (EROS) data center. 
This product was corrected from distortions related to sensor, satellite and Earth effects. All scenes 
were georegistered to a UTM projection with a WGS84 datum. 

Each of the Landsat ETM+ images was converted to radiance using a standard approach 
(National Aeronautics and Space Administration, 2009). Atmospheric correction and conversion 
to radiance was then performed using the Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH) module in ENVI 4.5 software package (Kaufmann, et al., 1997). For three 
of the scenes (Table 3), FLAASH was unsuccessful and therefore a modified black body 
correction (Chavez, 1988) was applied.  

Finally, the atmospherically corrected scenes were compared to orthorectified Landsat images 
which were acquired through the Global Land Cover Facility (Global Land Cover Facility, 2009). 
Most of the scenes (Table 3) had to be georegistered through selection of Ground Control Points 
(GCPs) because of geolocation differences between the orthorectified scenes and the ones used in 
the study. At least fifteen GCPs were selected for each scene with a Root Mean Square (RMS) 
error of less than 0.1 pixels.   

Landsat Snow Maps 
Each of the pre-processed Landsat ETM+ images was used as input to the snow cover mapping 

algorithm SNOMAP (Hall et al, 1995) which classified pixels as either snow-covered or snow-
free. SNOMAP is the snow mapping algorithm used in the standard MODIS snow cover product 
and has a long heritage in snow mapping. The 30-m Landsat snow maps were then used to 
calculate snow fraction within each MODIS pixel. The land surface reflectance bands provided in 
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MOD09GA have a 500 m spatial resolution. However, errors with MODIS geolocation (Wolfe, 
2007) mean that each pixel had sampled a slightly larger area. A common approach in resampling 
snow fraction to MODIS pixel size is to calculate the fraction within a large circle around a pixel 
(Painter et al., 2009).  In this study, resampling was performed within a 750-meter-radius circle 
around each MODIS pixel which means that the analyzed spatial footprint was 1.77 km2.  

Table 3. Landsat ETM+ Training (1 through 11) and Test (A, B and C) Scenes 

Scene 
WRS-2 

Path/Row 
Date 

Acquired 
Predominant Reclassified-For-

Sampling Land Covers 
Number of 
Samples 

11, 2 24/23 04/24/2000 
Tundra, grasslands/shrublands, 

wetlands 
4,400 

2 24/28 12/10/2002 
Deciduous forests, mixed 
forests, mixed agriculture 

6,209 

3 24/28 02/28/2003 Deciduous forests, mixed forests 1,853 

4 26/29 02/07/2002 
Deciduous forests, mixed 
forests, mixed agriculture 

2,446 

5 26/30 02/07/2002 
Mixed agriculture 

 
1,288 

6 38/21 12/25/2001 
Evergreen forests 

 
1,400 

7 38/22 03/19/2003 
Evergreen forests, mixed 

forests, tundra 
2,228 

8 39/22 11/01/2002 
Evergreen forests, mixed 

forests, mixed agriculture, tundra 
4,625 

9 39/24 11/01/2002 
Mixed agriculture, 

grasslands/shrublands 
2,000 

101, 2, 3 65/17 05/12/2001 
Tundra, grasslands/shrublands 

 
3,400 

111, 2, 3 73/11 05/23/2002 
Barren/sparsely vegetated, 

grasslands/shrublands 
1,800 

A2, 3 11/20 11/07/2000 
Barren/sparsely vegetated, 

grasslands/shrublands 
61,531 

B 43/21 04/19/2002 Evergreen forests, mixed forests 116,874 

C 25/28 04/08/2003 
Deciduous forests, mixed 
forests, mixed agriculture 

96,282 

1 Modified Black Body Atmospheric correction used instead of FLAASH.  
2 Additional georeferencing was not performed  
3 Scene used in developing MODIS FSC product (Salomonson and Appel 2004, 2006) 

MODIS Processing 
Water was excluded from the analysis using the water mask acquired from the MODIS land 

cover product MOD12Q1. Areas identified by visual examination as cloud covered in the Landsat 
images were also masked. Finally, the cloud state and quality data sets provided with the 
MOD09GA product were analyzed to exclude pixels that were cloud-covered, mixed, fell within 
cloud shadow or had been produced at less than ideal quality. 

Sampling 
A total of eleven Landsat snow maps (Figure 1) were sampled to create training, validation and 

test data sets. Following usage in the ANNs literature both the training and validation data sets 
were used during network training. The samples from the training data set were used in adjusting 
the weights of the ANN. After each training iteration, the validation data set was used to measure 
the generalization performance of the network as represented by the mean square error (MSE) 
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between the ANN FSC output and reference FSC output. Training ended when MSE began to 
increase indicating overtraining of the network (Haykin, 1999).  

Sample points were selected using stratified random sampling. Stratification was done by land 
cover (eight classes) and by snow cover fraction which was categorized in 0.1 intervals to create 
ten FSC classes. After sampling, the eleven Landsat ETM+ images used for creating the reference 
snow maps were visually examined and it was determined that some clouds had not been detected 
before sample points were selected. Therefore, 297 points were removed from the sample data set 
because of apparent contamination by cloud cover or shadows. The final sample data set included 
31,649 observations. It was then split in three fractions. One half of the samples were used for 
training, a fourth of the samples for network validation and the remaining for testing the trained 
network.  

 

Figure 1. Training and test sites are located in North America. Training sites are selected representative of 
various land covers.   

Three additional Landsat snow maps (Figure 1) were selected and reserved to independently test 
the results on scenes not used during training. Test Scene A (Table 3) was located in Labrador, 
Canada and contained barren/sparsely vegetated and grassland/shrublands land covers. Test Scene 
B contained evergreen and mixed forests and was located in Alberta, Canada. And Test Scene C 
contained deciduous and mixed forests and mixed agriculture. It was located in Michigan and 
Wisconsin, United States. All of the available MODIS pixels covering these scenes were used. 

Network Inputs 
Nine inputs were provided to the ANN (Table 1). Seven MODIS surface reflectance bands were 

provided in the MOD09GA product. Calculated NDSI and NDVI were used to emphasize snow 
covered areas and vegetated areas, respectively. Land cover in the IGBP classification scheme was 
used as an input because spectral characteristics could vary across land covers. Even though 
training samples were selected from eight combined classes the complete IGBP classification 
system was used as input to the ANN so that the network could learn to differentiate between 
slightly different classes such as evergreen needleleaf forest and evergreen broadleaf forest. 
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ANN Configuration 
Feed-forward ANN implementation in the Neural Network Toolbox in MATLAB R2008b was 

used in this study. Important network configurations were summarized in Table 4. One hidden 
layer was chosen as it had been demonstrated that a single hidden layer can learn any mapping 
(Priddy and Keller, 2005). The number of hidden layer neurons was chosen to be 20, twice the 
number of inputs, after experimenting with 10 and 30 hidden layer neurons networks produced 
similar results.  

The neural network generated some snow fraction values above 1 and below 0. In FSC mapping 
such values are unrealistic as a pixel cannot have a negative amount of snow cover and cannot 
have snow cover exceeding 100 percent of the pixel. Therefore, FSC values larger than 1 were set 
to 1 and smaller than 0 were set to 0. 

Some of the network parameters were determined by testing the performance of the network 
while holding initial weights constant during the different runs. Performance of the network was 
determined by examining the RMS error of the test data set and the three independent Landsat test 
scenes and by visually comparing the resulting ANN FSC maps to the reference FSC maps. 

A tangent hyperbolic transfer function between the input and hidden layer was selected for the 
final network but a logistic sigmoid transfer function was also tested. Both of these transfer 
functions are sigmoid functions which is the most common transfer function in ANNs (Haykin, 
1999). The ANN normalization method applied scaled each input feature between -1 and 1. 
Several other common normalization methods were also tested including: scaling between 0.1 and 
0.9 for the tangent hyperbolic transfer function, scaling between 0 and 1 and between 0.1 and 0.9 
for the logistic sigmoid transfer function, and mapping each feature’s mean to 0 and its standard 
deviation to 1. Overall these normalization schemes produced FSC maps of similar quality. 

Table 4. Neural Network Description and Parameters 

Training method Levenberg-Marquardt backpropagation (supervised) 
 

Learning method Gradient descent with momentum weight and bias learning 
function 

Performance measure Mean Square Error (MSE) 
 

Network architecture Nine input neurons, one hidden layer with 20 hidden layer 
neurons, and one output neuron 

Transfer functions Tangent hyperbolic between input and hidden layers; 
Linear between hidden and output layers 

Input/output 
normalization 

Each input band is scaled between -1 and 1 

 
After configuring the network, the sample data set which included the pixels randomly sampled 

from the eleven Landsat training scenes was examined. Approximately 200 samples had errors of 
computed FSC larger than three standard deviations of the mean and were removed. The network 
was trained on the remaining data set. Different runs were performed allowing for random 
initialization of weights. The ANN initialized with the saved initial weights had best performance 
and its results were further analyzed by examining scatter plots comparing the neural network 
generated FSC and reference FSC for each of the Landsat reference training scenes. The estimated 
FSC of the samples from training scene 3 (Table 3) was considerably underestimated. Samples 
from this scene were removed and a final ANN was trained using the saved initial weights. 

RESULTS AND DISCUSSION  

Overall, the ANN approach appears to do an adequate job of mapping FSC. Agreement between 
the Landsat reference FSC and the ANN-estimated FSC was good with the Coefficient of 
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Determination (R2) ranging from 0.80 to 0.91 (Table 5). This was also illustrated through 
scatterplots of reference Landsat FSC versus ANN FSC (Figure 2). While, overall agreement was 
high, the neural network appeared to overestimate snow fraction at low FSC and underestimate it 
at high FSC.  

 

  Figure 2. Scatter plot graphs showing ANN FSC results and Landsat snow map FSC for the three test 
scenes. The blue line is the 1:1 line. 

The underestimation of FSC is also evident by comparing Landsat and ANN snow fraction 
maps (Figures 3, 4 and 5). The darker colors on the ANN snow fraction map of the Labrador test 
scene (Figure 3) indicate lower FSC than the lighter colors for the same areas showing high FSC 
on the reference snow fraction map. The ANN FSC map of the test scene over Saskatchewan 
(Figure 4) had lower FSC than the reference FSC map. However, the ANN FSC captures the 
spatial variability of snow cover with the same areas having most and least snow fraction in both 
ANN and reference FSC maps. Spatial variability of ANN FSC was least in the test scene over 
Michigan and Wisconsin.  

 

Figure 3. ANN results of the network over Test Scene A are displayed. A false-color image composite of 
MODIS bands 6, 2 and 1 as R, G and B shows snow as cyan colors (a). Reference snow map shows pixels 
covered with large snow fraction as light blue and snow-free pixels as dark blue (b). Neural network FSC 

map is displayed (c). 

Table 5 summarizes errors between ANN and Landsat FSC maps. Not surprisingly, RMS error 
between ANN FSC and reference FSC (10.39%) was lowest over the non forested Labrador test 
scene. The two forested scenes had slightly higher but similar RMS errors of 12.66% for 
Saskatchewan and 12.75% for Michigan. The three test scenes’ RMS errors were also analyzed for 
the three combined land cover categories (Table 6). The RMS error over mixed agriculture was 
largest at 13.85%, followed by forest at 12.54% and no forest at 10.79%. 

 20



 

 

Figure 4. The results of the network over Test Scene B. The displayed maps are patterned after those in 
Figure 3 

The ANN FSC was also compared to the FSC provided as part of the MODIS/Terra Snow 
Cover Daily L3 Global 500m Grid (MOD10A1) product (Riggs et al., 2006) (Tables 4 and 5). 
With exception of the Labrador test scene the ANN RMS errors were comparable to the 
MOD10A1 FSC. The better fit of MOD10A1 FSC for the Labrador test scene may be because 
thise scene was used in the development of the MODIS snow fraction algorithm. Based on the two 
test scenes not used in the developing of the MODIS FSC method, the ANN and the empirical 
NDSI approaches achieve similar FSC accuracy when compared to the reference Landsat snow 
maps. 

  Figure 5. The results of the network over Test Scene C are displayed. The displayed maps are patterned 
after those in Figure 3 

Table 5. RMSE and R2 between ANN FSC and reference FSC and between MOD10 FSC and reference 
FSC 

 Test Samples Test Scene A Test Scene B Test Scene C 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
ANN 0.80 13.30% 0.89 10.39% 0.89 12.66% 0.91 12.75% 

MOD10A1 n/a n/a 0.91 8.99% 0.90 12.16% 0.89 12.50% 

Table 6. RMSE and R2 per combined land cover category 

 Forests Mixed Agriculture No Forest 
Number of 

samples 
192, 418 15,817 66, 452 

 R2 RMSE R2 RMSE R2 RMSE 
ANN 0.92 12.54% 0.97 13.85% 0.90 10.79% 

MOD10A1 0.91 12.61% 0.97 7.46% 0.92 9.37% 
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Vikamar and Solbergs (2003) reported R2 of 0.95 and 0.85 for observed and modeled through 
linear spectral unmixing snow fraction over the forested parts of their study area. These also 
compared well with the ANN FSC as the R2 of the three independent test scenes was between 0.89 
and 0.91. The most recent study of linear mixture analysis for FSC mapping (Painter et al., 2009), 
reported an average RMS error of 5% for snow-covered pixels. The validation scenes in this study 
were located in parts of the Colorado Rocky Mountains, the Sierra Nevada of California, the 
headwaters of the Rio Grande, and the Himalayas where the characteristics were varying 
topography and vegetation. For example, no vegetation, brush, meadows and alpine tundra were 
present in the high altitudes while coniferous and desciduous forests were present at the lower 
elevations of the validation areas. 

CONCLUSIONS AND FUTURE WORK 

In this study, a neural network trained with backpropagation successfully learned the 
relationship between MODIS snow fraction and surface reflectance in seven wavelength bands, 
NDSI, NDVI and land cover. The network was applied to scenes independent of those used for 
training and results were compared to reference Landsat snow maps and to the MODIS FSC 
product. The ANN performance across the test scenes and across different land cover types was 
comparable to the standard MODIS snow fraction product. 

This was the first study that the authors were aware of training a neural network to estimate 
snow cover fraction. The network architecture employed was a very traditional backpropagation 
feed-forward network. Improved snow mapping accuracy may be obtained by developing a more 
sophisticated ANN or through additional inputs such as tree cover fraction, elevation or through 
possibly including MODIS thermal bands in the network. 
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