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ABSTRACT

Border ice commonly occurs in small rivers and brooks with rapid flow; it grows
slowly until a complete ice cover is formed. Border ice may be subjected to rapid
changes in water level leading to its failure.

An analytical approach has been developed for modelling the hydrodynamic-structural
interaction of border ice and its failure. The analysis considers the possibility of
failure of border ice due to rapid changes in water level. The modelling process assumes
elastic behavior of the ice and is based on a finite element technique which has been
used to develop the FEM! Model presented herein. The analogy of a beam on an elastic
foundation has been used in the formulation the FEMI Model.

The paper investigates the possibility of failure of border ice with different
variations in slope of the undersurface and hinged or fixed boundary conditions at the
river bank, employing principal stress theory as a criterion for failure.

The results of this investigation are presented in a dimensionless form to enable
examining the border ice for small rivers with different geometries and ice properties.

1. INTRODUCTION

The phenomenon of border ice formation in small rivers has been investigated
numerically and experimentally by many researchers, Devik (1964), Hanley and Michel (1975
and 1977), Hirayama (1986), Matousek (1984), and Michel (1971). These investigations
thoroughly examined air temperature, wind velocity, stream discharge, etc. and their
effects on the rate of formation of border ice. The border ice may be subjected to rapid
changes in water level. To the author's knowledge, these changes in water level and
their effects on the cracking of the border ice, its failure and separation from the
river bank have not been examined.

This paper presents a numerical model called FEMI which has been developed based on
the finite element technique. The paper investigates the hydrodynamic-structural
interaction for border ice and its failure. The analogy of a beam on an elastic
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foundation has been used in the formulation of the FEM1 Model. The possibility of border
ice failure is predicted on the basis of a combination of bending moments and shearing
forces in the ice employing principal stress theory as a criterion for failure.

Many cases of border ice have been examined with different variations in slope of
the undersurface, lengths, thicknesses, ice properties, and end conditions at the river
bank. The variation in border ice geometries in different rivers and its properties in
different cold regions at the time of the failure does not permit effective presentation
of results for specific geometry and ice properties. Therefore, the model results have
been generalized by presenting them in a dimensionless form. The solution stability and
validity of the dimensionless results have been examined along with different
combinations of input variables such as number of ice beam elements, thickness, length,
uplift pressure, and elastic modulus. These variables have been used to obtain the
relative stiffnesses and corresponding dimensionless deflections, bending moments, and
shearing forces. It is submitted that the presented results will enable examining many
small rivers with different widths, border ice geometry, and ice properties. Numerical
examples are given at the end to demonstrate the use of the developed dimensionless
formulation.

2. STATEMENT OF THE PROBLEM OF BORDER ICE

The border ice is initially buoyantly supported on the water and attached at the
river bank. The application of the uplift pressure due to rapid changes in water level
can be followed by cracking in the border ice and separation from the bank. The vertical
structural equilibrium of an element of the border ice in such a case considers its own
weight, the buoyant force, decrease on buoyant force due to deflection, and uplift
pressure as shown in Fig. (1) and represented by the following equations:

P

p+y (5 H =Y) - v; H» (1)

il

or P=p-vY. (2)
Here, P is met upward pressure, p is uplift pressure, Y, and vy, are unit weights of water
and ice, S, is specific gravity of ice, Y, and Hi are the deflection and the border ice

thickness.

The form of equation (2) implies that the uplift pressure is directly proportional
to the deflection. This suggests that a unit length of the border ice in the direction
of flow may be treated as a beam on an elastic foundation with modulus of foundation
reaction equal to y, the unit weight of water. Hetenyi (1946) examined the behaviour of
a beam on an elastic foundation; he presented his solutions for the general differential
equation governing the deflected shape of a uniform beam resting on a Winkler medium;
such a medium was defined as one for which '"the pressure in the foundation is
proportional at every point to the deflection occurring at that point and independent of
pressures or deflections elsewhere in the foundation". The differential equation can be
written as follows:

4
EId—%+7Y=p, (3)
dax
4
or Eli%+4x4y=%f'
dx (4)

Here, A = 4 /YJ4EI 1is the characteristic of the system or the damping factor, EI is the
flexural rigidity of the border ice for unit length, and X is the distance from the
shore.

Tt should be noted that vy, the modulus of foundation reaction, 1is specified for the
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length border ice in the direction of flow. It will only be numerically equal to the
unit weight of the water if the border ice is of unit length in the direction of flow
which is true in this analysis in which Yy = 9,81 kPa.

In Hetenyi's solution, it has been indicated that A, the characteristic of the
system, controls the distributions of deflection, rotation, bending moment, and shearing
force for any particular case of loading.

Some researchers, Beltaos (1984 and 1985) and Billfalk (1981 and 1982) have employed
Hetenyi's solutions for analysis of river ice covers. Their work considered a finite
complete ice cover with symmetrical boundaries (hinged-hinged and fixed-fixed) and an
infinite river ice cover. In both cases a uniform thickness for the ice cover was
considered.

3. FEMI MODEL FORMULATION AND COMPUTER IMPLEMENTATION

The formulation of the FEMI Model for border ice is based on the finite element
stiffness methodology for structures. In this method, the border ice is divided into a
finite number of ice beam elements on an 'elastic foundation'. These elements are
interconnected at nodal points which have a sequential numbering system to minimize the
memory required during the computer calculations. It should be noted that it is
important to have a considerable number of elements especially for varied thickness as is
the case in border ice analysis.

All forces and displacements for an element of the border ice are shown in Fig. (2).
Considering border ice with a finite number of beam elements, the external and internal
forces can be related as follows:

{P} = [A] {F}; (5)

where {P} is an external forces vector, [A] is a statics matrix, and {F} is an internal
forces vector.

Wang (1970) indicated, by using the reciprocal theory, that the internal and
external displacements can be related as follows:

te} = 417 {x); (6)
where {e} is an internal deformations vector and {X} is an external displacements vector.

The internal forces can be related to the internal deformations as follows:

{F} = [S] {e}; (N
where, [S] is a local stiffness matrix of the border ice.

Equilibrium, compatibility, and force-deformation requirements are satisfied by
equation (5) through (7) which are the fundamental equations in the finite element
analysis of border ice.

By substituting equation (6) inte equation (7) the following equation can be
written:

{F} = [SAT] {X}; (8)

and substituting equation (8) into equation (5) the following equation can be written:

"{P} - fASAl] 0 T )
where, [ASAT] is the global stiffness matrix of the border ice.

Equation (9) represents a system of simultaneous equations which can be solved to
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obtain the displacements {X} after imposing boundary conditions. Then using equation
(8), the forces induced in the border ice at the nodal points can be obtained. Imposing
the fixed boundary conditions in the stiffmess method has been made by considering very
high stiffness for the rotational and vertical springs at the fixed boundary (i.e. no
rotation and no vertical tramslation), and for the hinged boundary very high stiffness
for the vertical spring and zero stiffness for the rotational spring (i.e. free to
rotate and no vertical translation).

In the analogy of border ice with beam on an elastic foundation a provision has to
be made to update the results especially for deflection. There is a subroutine named
TICDISP in the FEMI Model which solves the simultaneous equations and calculates the
dimensionless deflections and rotations, and has a provision to stop the calculations if
Y > S_H. (the maximum allowable deflection) and continue if Y < S H,. If FEMI
Model stgps the calculations, it means that the free edge emerges from thezaé%er and the
theory of beam on an elastic foundation is no longer valid. Also, to satisfy the analogy
of a beam on an elastic foundation the border ice should not be flooded from the top.

The assumption of elastic response for the ice is valid for rapid changes in the
water level as considered in this analysis. There is mo universal agreement on the
elastic limits for ice but some figures have been given by Sinha (1977), he suggested
that for stresses less than 2 MPa and time less than 1 second or stress less than 0.5 MPa
and time less than 100 seconds elastic behaviour can be assumed. Also, Ashton (1986) has
reported limits in which the ice responds elastically to stresses less than 1 MPa and
time less than 100 second or if ice is loaded to fail within 2 seconds based on
Traetteberg et al. (1975).

4, DIMENSIONLESS DEFLECTION, BENDING MOMENT, AND SHEARING FORCE

Since the results are presented in a dimensionless form, it is found from equation
(2) that a dimensionless group for the deflection can be written as follows:

Dimensionless deflection = gz . (10)

Equation (10) represents the proportionality between the deflection and pressure due
to changes in water level.

The bending moment, M, and shearing force, Q, distributed along the border ice for
ice length, L, are governed by the characteristic of the system, A. If L, A, M, Q, and p
are considered variables for a dimensional analysis, the following dimensionless groups
can be formed:

Relative stiffness = AL; (11)

The characteristic of the gystem X, is calculated based on the minimum thickness of
the border ice at the free edge.

2
Dimensionless shearing force = ABE s (12)
. AQ .
Dimensionless shearing force = . (13)

T TS TEE éfé,ﬂpfégéntéaw‘iﬁ.ntheu\ﬁéxtw~gectioﬁ~»$e£erringm‘to_,th@seghdimﬂnﬁiﬂnleﬁsw,;;\-‘-HN ST s

groups in equations (10) through (13). Also, the shore distance is considered in a
dimensionless form (X/L).
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5. RESULTS AND DISCUSSION

The dimensionless bending moment and deflections for border ice with uniform
thickness and hinged ends at the river bank are presented in Fig. (3) and Fig. (4). In
establishing these relationships and all others, different combinations of the input
parameters such as Himin, E, L, and p, were used in obtaining different values of AL from
I to 6. All dimensionless relationships have been checked by using different element
sizes until a stable solution was obtained. Alsc, the solutions obtained by the FEMI
Model have been verified by comparing them with the available solutions by Hetenvi (1946)
for uniform thickness. This confirmed the validity and the stability of the results, It
can be seen that the position of the maximum dimensionless bending moment tends to move
toward the shore with increasing relative stiffness AL (Fig. (3)). The maximum
dimensionless deflection occurs at the free edge of the border ice for AL < 3 as shown in
Fig. (4). It tends to move toward the centre of the border ice for AL = 4. The
dimensionless bending moment for uniform thickness of border ice with fixed ends is shown
in Fig. (5). It can be seen that the value of the maximum dimensionless bending moment
always occurs close to the bank. The dimensionless deflection which tends to behave
similar to the hinged end case is presented in Fig. (6).

In the case of variable thickness, four different slopes of the under surface (2.5°,
5°, 7.5°, and 10°) have been assumed. This range is assumed to cover most of the border
ice formed in small rivers.

The dimensionless bending moments for the four slopes, a range of AL from 1 to 6,
and hinged ends are shown in Fig. (7), Fig. (9), Fig. (11), and Fig. (13). These figures
show an insignificant change in the dimensionless bending moment with increasing slope of
the undersurface for each AL from 1 to 6. Such change vanishes for slopes greater than
5°. The corresponding dimensionless deflections are presented in Fig. (8), Fig. (10),
Fig. (12), and Fig. (14). These figures show an insignificant change in the
dimensionless deflection with increasing slope of the undersurface and the relative
stiffness AL. Such change vanishes for slopes greater than 5°.

It should be pointed out that all dimensionless relationships for nonuniform
thickness have been established based on the characteristic of the system at the free
edge (i.e. at Him.n). Also, the border ice with slopes 2.5° and more has a large
increase in flexutal rigidity toward the bank for all relative stiffnesses; this explains
the decrease in deflection and the behavior of border ice as a highly stiffened beam in
all cases. Undersurface slopes from 0.5° to 2.0° are to be investigated for future
applications of FEMI Model to examine the changes in the dimensionless relationships,
especially for deflections.

In case of border ice with uniform thickness, the predicted position of cracking is
the same as the position of maximum dimensionless bending moment and maximum bending
stress as well as the position of maximum principal stresses. The predicted position of
cracking tends to move toward the bank with increasing the relative stiffness as shown in
Fig. (15). However, for border ice with uniform thickness and a fixed end, the predicted
position of cracking is always close to the bank which represents the position of maximum
dimensionless bending moment, maximum bending stress, and maximum principal stress. Such
cracking positions for both cases indicates that the shear stress has a negligiable
effect.

The flexural rigidity was found to be the major factor affecting the predicted
position of cracking for varied thickness of border ice with a hinged end. The flexural
rigidity caused the predicted position of cracking to shift toward the free edge from the
position of maximum dimensionless bending moment. However, the predicted positions of
cracking, maximum bending stress, and maximum principal stress coincided. The predicted

position of cracking tends to move toward the free edge with increasing slope of the
undersurface for any given relative stiffness from 1 to 6 as shown in Fig. (15).

The predicted position of cracking for fixed end border ice with varied thickness is

close to the bank. In this paper, due to the limitation of space. The results for only
one slope (2.5°) are presented for three different relative stiffnesses from 1 to 3. The
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dimensionless bending moment for these cases is presented in Fig. (16). It shows that the
maximum dimensionless bending moment is close to the bank. Furthermore, it was found
that the predicted cracking, maximum bending stress, and maximum principal stress
coincided and were close to the bank. Figure (17) shows the dimensionless deflection;
from which it can be seen that the position of maximum dimensionless deflection occurs at
the free edge of the border ice.

The present formulation is also applicable to the case of border ice subjected to a
drop in water levels with the undersurface in contact with the water everywhere.

6. NUMERICAL EXAMPLES

Fxample (1): Examine the failure of uniform thickness border ice for H, = 0,16 m, L
= 10.0 m, E = 4600 MPa, p = 0.5 kN/m, and flexural strength = 700 kPa for (%) hinged end
and (b) fixed end.

(a) Hinged end case

These data give S H, = 0.147 m, X = 0.2 hence AL = 2. Using results in Fig. (4)
gives Y = 0,068 m < 0.147 m, Fig. (15) gives X /L = 0.3. Also using results in Fig.
(3). an?aﬁig. (18). M = 1.5 kN.m, and Q = ~0.035 %N. The principal stresses © , can be
obtained from L

01,2 = 0.5 Ob + 0.5 Gb + 4 1

(o are principal stresses, o, is bending stress, and T is average shear stress).
Heniéé, maximum principal tensile stress at top = maximum bending stress at top = 353.5
kPa. Therefore, p = 0.5 kN/m is not suffient to cause cracking. However, if p = 1.0
kN/m by similar calculations it can be shown that cracking will occur at 3.0 m from the
bank.

(b) Fixed end case

From the results in Fig. (6) gives Y ax - 0.062 m < 0.147 m, also using the results
in Fig. (5) and Fig. (18) M = =6.25 kN.m, and Q = -2.33 kN.

Hence maximum principal tensile stress at bottom ¥ maximum bending stress at bottom
= 1465 KPa. Therefore, p = 0.5 kN/m or less is enough to cause cracking close to the
bank. This implies that the uplift pressure due to change in water level which is
required to cause cracking for fixed end is less than that required for a hinged end.

Example (2): Examine the failure of border ice with variable thickness for H, i =
0.05m, L = 4.0 m, 8 = 2.5°, E = 4600 MPa, p = 1 kN/m, and flexural strength = 708 kPa
for (a) hinged end and (b) fixed end.

(a) Hinged end case

These data give S_H, in = 0.046 m, A = 0.5 hence AL = 2. From the results in Fig.
38 Y = 0,152 m > G.6%8"m and therefore the free edge emerges from the water level,
and h¥8% the methodology is not applicable.

(b) Fixed end case

From the results in Fig. (17) gives Ymax = 0.026 m < 0.046 m, also from Fig. (16),

and Fig. (18) M = -6.95 kN.m, and Q = -3.6 kN. “Hence, ma imum principal-tensile -stress
at bottom =~ maximum bending stress at bottom = 830 KPa. Therefore, p = 1.0 kN/m which is

sufficient to cause cracking close to the bank.

flooding from the top these calculations will be automatically stopped and so indicated
in the output.

The limitation criterion built into FEMI for the maximum deflection implies that for
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7. CONCLUSIONS

A FEMI Model based on the finite element method coupled with the analogy of a beam on
an elastic foundation has been developed to analyze the possibility of border ice cracking
at the bank under rapid changes in water level.

It has been found that the predicted position of cracking for fixed end border ice
with uniform and varied thickness of border ice is close to the bank. The hinged end
border ice with uniform thickness has a predicted cracking position which tends to move
toward the bank with increasing relative stiffnesses from 1 to 6. In these three cases
the predicted position of cracking occurred at the position of maximum bending
moment, which coincided with the location maximum bending stress and maximum principal
stress. In case of variable thickness of border ice with hinged end, the predicted
cracking position tends to move toward the free edge from the position of maximum bending

-moment with increasing slope of the undersurface for any given relative stiffness from 1
to 6. This displayed the importance of flexural rigidity. However the predicted
cracking position coincided with the position of maximum bending stress and maximum
principal stress in all cases. These results suggest that the shear stress has no effect
on the predicted position of cracking. It was found that the changes in dimensionless
bending moment for hinged border ice with varied thickness insignificant with increasing
slopes between 2.5° to 10°, for each relative stiffness from 1 to 6. However, these
changes vanish for slopes greater than 5°. It was also found that the changes in the
corresponding dimensionless deflection are insignificant with increasing slopes and
relative stiffnesses. Such changes vanish for slopes greater than 5°.

The numerical examples imply that the uplift pressures required to cause cracking in
case of fixed end border ice are less than those required for a hinged end case with the
same geometries, strength, and properties. This was found to be the case for border ice
with uniform or variable thickness.

The developed dimensionless formulation can also apply for border ice subjected to a
rapid drop in the water levels with the undersurface still in contact with the water
everywhere. The border ice must be free from flooding at the top to satisfy the analogy
of beam on an elastic foundation.
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