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ABSTRACT 

Accurate estimation of snowmelt flux is of primary importance for runoff prediction, which is 

used for water management and flood forecasting. Lateral flows and preferential flow pathways in 

porous media flow have proven critical for improving soil and groundwater flow models, but 

though many physically-based layered snowmelt models have been developed, only 1D matrix 

flow is accounted for in snow models. Therefore, there is a need for snowmelt models that include 

these processes so as to examine the potential to improve snowmelt discharge timing and 

contributing area in hydrological modelling. An initial dual pathway version of a two-dimensional 

snow model is presented that simulates vertical and lateral water flows through the snow matrix 

and preferential flow paths, internal energy fluxes, melt, and refreezing. The dual pathway model 

utilizes an explicit finite volume method to solve for the energy and water flux equations over an 

orthogonal grid. Energy available at the snow surface, and soil slope angle are set as model inputs. 

The initial conditions include the number of snow layer, their properties, temperatures, and liquid 

water contents. This heterogeneous flow model is an important tool to help understand snowmelt 

flow processes in complex and level terrains and how snowmelt-derived runoff forecasting might 

be improved. 

Keywords: snowmelt, preferential flow paths, two-dimensional snow model, heat and mass 

transfers 

 INTRODUCTION 

To accurately predict the timing and magnitude of snowmelt runoff from deep snowpacks, water 

flow percolation within snow must be understood (Gray and Male, 1975; Wankiewicz, 1979). 

Liquid water flow within the snowpack is influenced by the internal properties of the snowpack. 

Deeper, colder snowpacks have slower flow rates; this lag and attenuation in timing of meltwater 

delivery to the soil surface makes the process important for runoff and streamflow generation in 

mountains. Amongst the snowpack’s internal properties, ice layers and flow fingers greatly impact 

the spatial and temporal distributions of snowmelt runoff (Marsh and Woo, 1984a; Marsh, 1991). 

Many theories have arisen to describe gravitational vertical flow percolation within a 

homogeneous, isothermal snowpack (Colbeck, 1972), water percolation through a subfreezing, 

layered snowpack with phase change (Illangasekare et al., 1990), or the influence of capillary 

forces on the water flow (Jordan, 1995). 
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Several numerical snowmelt models of differing levels of complexity have been developed in 

the past decades. Tseng et al. (1994) developed a complex two-dimensional snow model based on 

the theory of Illangasekare et al. (1990), but this theory has not been validated against in-situ data 

and does not incorporate preferential flow paths. Marsh and Woo (1985) created a one-

dimensional model that assumed mass flow through different flow pathways; however, this theory 

does not include lateral flows, the delay of water flow due to ice layers and assumed that each 

flow path extends over the complete depth of the snowpack. No operational snow model in 

hydrological models or land surface schemes is able to predict lateral flows, the formation of flow 

fingers and ice layers and their effects on the water flow through snow, resulting in inaccuracy in 

the prediction of catchment discharge and meltwater delivery to soil (Pomeroy et al., 1998). 

Therefore, in this paper a novel two-dimensional snowmelt model solving for the mass and energy 

flows is presented. The model includes an implementation of the theory of Hirashima et al. (2014) 

to simulate the formation of preferential flow paths. The importance of the parameterization of the 

water entry pressure for dry snow and lateral heterogeneities in snow grain size and density are 

demonstrated.  

MATHEMATICAL MODEL 

Snowpack ablation and melt 

A melting snow surface is a moving boundary at which heat transfer and phase change occur 

simultaneously. To estimate the heat transfer and phase change at this moving boundary, the 

Stefan condition is solved (Eq. 1) (e.g. Tseng et al., 1994). 

 

𝑄𝑛 = −𝜆
𝜕𝑇

𝜕𝑧
(𝑧 = 𝑆) + 𝐿𝑓𝜌𝑠𝑉𝑛       Eq. 1 

 
where 

  

𝑄𝑛 =  −𝜆
𝜕𝑇

𝜕𝑧
(𝑧 = 𝑆)       if   𝑇𝑠 < 0oC     

 

 𝑄𝑛 = 𝐿𝑓𝜌𝑠𝑉𝑛                   if    𝑇𝑠 = 0oC     

 

 

and 𝑄𝑛 is the heat flux at the surface [W/m
2
], 𝜆 is the thermal conductivity [W/(K m)], 𝜕𝑇/𝜕𝑧 the 

vertical temperature gradient at the surface [K/m], 𝐿𝑓 the latent heat of fusion of ice [J/kg], 𝜌𝑠 the 

snow density [kg/m
3
], 𝑉𝑛 the velocity of the melting snow surface [m/s], and 𝑇𝑠 is the snow surface 

temperature [
o
C]. 

The infiltration rate (Eq. 2) can be estimated from the vertical velocity of the melting snow 

surface 𝑉𝑛. 

 

𝑄𝑖𝑛𝑓 = 𝑉𝑛(
𝜌𝑠

𝜌𝑤
+ 𝜃)          Eq. 2 

   

where 𝑄𝑖𝑛𝑓 is the infiltration rate at the snow surface [m/s], 𝜌𝑤 the density of water [kg/m
3
] and 𝜃 

is the volumetric liquid water content within the melting volume.  This infiltration rate, estimated 

from the energy available at the surface of the snowpack, is then used as a boundary condition for 

the water flow equations. 

Water Flow  

The mass flow between each snow layer is estimated by solving for the two-dimensional 

Richards equation (Eq. 3).   

 

      
𝜕𝜃

𝜕𝑡
+ ∇𝑞⃗ = 𝑆𝑠                   Eq. 3 
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where 𝜃 is the volumetric liquid water content, 𝑞 is the macroscopic flow velocity [m/s] (Eq. 4) 

and 𝑆𝑠 is a mass sink term due to refreezing of liquid melt water in each layer [kg/m
3
.s]. 

 

The macroscopic flow velocity in an unsaturated medium is commonly estimated from Darcy's 

law under the condition that the flow is laminar (Reynolds Number < 1). 

 

                   𝑞⃗ = 𝐾(𝜃) ∇⃗⃗⃗(Ψ(𝜃) + 𝑧)                                                      Eq. 4 

 
where 𝐾(𝜃) is the unsaturated hydraulic conductivity [m/s] and Ψ(𝜃) is the matric suction [m]. 

For unsaturated porous media, both are functions of the water content. 

 

In snow science, studies have been conducted to establish relationships between snow hydraulic 

properties and water content. Calonne et al. (2012) developed a relationship between saturated 

hydraulic conductivity (𝐾𝑠), dry snow density, and optical grain size (Eq. 5) through three-

dimensional numerical computations. Knowing the saturated hydraulic conductivity, the 

unsaturated hydraulic conductivity can be estimated (e.g. Colbeck and Davidson, 1973) as, 

 

                                            𝐾𝑠 = 3
𝜌𝑤𝑔

𝜇𝑤
𝑟2exp (−0.013𝜌𝑑𝑠)                                             Eq.  5 

 

with 𝑔 the gravitational constant [m/s
2
], 𝜇𝑤 the dynamic viscosity of water [Pa.s], 𝑟 the optical 

grain radius [m] and 𝜌𝑑𝑠 the dry snow density [kg/m
3
]. 

Snow water retention curves 

The Water Retention Curve (WRC) is the relationship between matrix head and liquid water 

content. Analogous to flow through unsaturated soil, the snow WRC (Fig. 1) has hysteretic 

behaviour (Adachi et al., 2012). Yamaguchi et al. (2012) developed a WRC for snow based on the 

van Genuchten model (Eq. 6). Through laboratory experiments, they found empirical equations to 

link the parameters   and n (cf. Eq. 6) with dry snow density and optical grain size (Eq. 7). 

However, this WRC was developed only for drying snow, i.e. the snow was initially wet and 

liquid water was draining from it. 

 

𝑆𝑒 = (1 − |𝛼Ψ|𝑛)−𝑚         Eq. 6 

    

where 𝑆𝑒 is the effective saturation (𝑆𝑒 = (𝜃 − Φ)/(𝜃𝑖 − Φ), with Φ the snow porosity and 𝜃𝑖 the 

irreducible water content), and 𝛼, 𝑛, and 𝑚 are parameters (Eq. 7), with 𝑚 chosen as  𝑚 = 1 −
1/𝑛. 

 

𝛼 = 4.4x106 (2
𝜌𝑑𝑠

𝑟
)

−0.98

      Eq. 7 

 

𝑛 = 1 + 2.7x10−3 (2
𝜌𝑑𝑠

𝑟
)

0.61
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Figure 1. Conceptual representation of the hysteretic behaviour between matric suction and liquid water 

content in the snow water retention curve. 

However, in the case of wetting snow, i.e. snow that is initially dry and into which liquid water 

infiltrates, the model of Yamaguchi et al. (2012) is not applicable. Therefore, in the 2D model 

presented here, a new value of water entry pressure is taken from the study by Katsushima et al. 

(2013) when the initial water content of a cell is below the irreducible water content level (dry 

snow).  The snow WRC developed by Yamaguchi et al. (2012) is used to estimate the matric head 

when the water content is above the irreducible water content (wet snow). 

Implementation of a water entry pressure for wetting snow in a snow model 

The impact of implementing a new water entry pressure for dry snow is presented through an 

example analyzing flow through two different snow layers. The upper layer (layer 1, a wet dense 

snow layer) has a dry density of 350 kg/m
3
 and an optical grain diameter of 0.3 mm. The lower 

layer (layer 2, a dry ice layer) has a density of 450 kg/m
3
 and an optical grain diameter of 0.7 mm 

(Figure 2).  

 

Figure 2. Representation of the two snow layers 

The flux q  between layer 1 and layer 2 was analyzed for two different cases: 

 Variable water entry pressure: the model by Yamaguchi et al. (2012) is used for the 

upper wet snow layer and the Katsushima et al. (2013) water entry pressure is used for 

the lower dry snow layer. 

 Wet water entry pressure: the model by Yamaguchi et al. (2012) is used for both dry 

and wet snow layers. 

The flux q  from layer 1 to layer 2 can be estimated using Darcy's law (Eq. 4)  and liquid water 

flows from layer 1 to layer 2 only when q  is positive. 

 

Figure 3 shows the change of /q K  with liquid water content in layer 1 for the two different 

cases considered. It can be observed that introducing a new water entry pressure for dry snow 

allows much more liquid water to accumulate in layer 1 before initiating downward flow and that 

this has the potential to simulate the ponding of liquid water at snow layer interfaces that is 

observed in nature. 



7 

 

 

 

Figure 3. Change of liquid water in layer 1 with /q K  

Implementation of snow heterogeneities 

In their theoretical study on the triggering of preferential flow path formation, Hirashima et al. 

(2014) suggested these are due to spatial heterogeneities in snow grain size. The impact of adding 

a perturbation in snow grain size on the water flow is therefore discussed. Using the previous 

modelling example (Fig. 2), three cases are considered: i) the grain size in layer 2 is unchanged, ii) 

it is decreased by 1% and iii) it is increased by 1%. Figure 4 shows the water content in layer 1 as 

function of the flux /q K  for the three different grain sizes in layer 2. It can be observed that 

greater water flow from layer 1 to layer 2 occur when there is a smaller grain size in layer 2: for 

this case the downward flux becomes positive at lower water contents in layer 1.  

 

Figure 4. Change in the ratio /q K  for different three grain sizes in layer 2 

Flow 
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Refreezing of liquid water 

In a wet subfreezing snowpack, heat and momentum transfers occur between the flowing liquid 

water and the solid phase. Illangasekare et al. (1990) developed a theory describing refreezing of 

meltwater in a subfreezing snowpack. They expressed the maximum mass of liquid water per unit 

volume of snow (𝑚𝑚𝑎𝑥) that must freeze to raise the snow temperature to zero, i.e. to raise the 

snow cold content to zero (Eq. 8) as, 

 

𝐿𝑓𝑚𝑚𝑎𝑥 = −𝜌𝑠𝐶𝑝,𝑖𝑇      Eq. 8 

 

where 𝑇 is the temperature of snow layer [K] and 𝐶𝑝,𝑖 is the specific heat capacity of ice [J/(kg 

K)]. 

 

However, the real mass of liquid water per unit volume of snow that refreezes during a 

numerical time step (𝑚𝑓) is always less than or equal to 𝑚𝑚𝑎𝑥, as 𝑚𝑓 is limited by the available 

liquid water content in the snow layer. The new snow layer temperature at the end of a numerical 

time step t  can then be estimated using Eq. 9.  

 

𝑇𝑡+Δ𝑡 =
𝜌𝑠

𝑡𝐶𝑝𝑖𝑇𝑡+𝑚𝑓𝐿𝑓

𝜌𝑠
𝑡+Δ𝑡𝐶𝑝𝑖

                     Eq. 9 

 

At the end of the same time step, snow porosity ( 𝜙), effective water saturation (𝑆𝑒), and snow 

density (𝜌𝑠) are also updated as shown in Eq. 10: 

 

 

Φ𝑡+Δ𝑡 = Φ𝑡 +
𝑚𝑓

𝜌𝑖
        Eq. 10 

 

𝑆𝑒
𝑡+Δ𝑡 =

𝜃𝑡−𝑚𝑓/𝜌𝑤

Φ𝑡+Δ𝑡       

      

𝜌𝑠
𝑡+Δt = 𝜌𝑠 + 𝑚𝑓   .     

Heat transfers in snow 

To simulate heat transfers in the snowpack, the two-dimensional heat conduction equation is 

solved following Albert and McGilvary (1992): 

 

(𝜌𝐶𝑝)
𝑠

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥𝑘
(𝜆

𝜕𝑇

𝜕𝑥𝑘
)  with 𝑘=1,2 representing the two spatial directions  Eq. 11 

 

such that  (𝜌𝐶𝑝)
𝑠

= (𝜌𝑎𝜃𝑎𝐶𝑝,𝑎) + (𝜌𝑤𝜃𝑤𝐶𝑝,𝑤) + (𝜌𝑖𝜃𝑖𝐶𝑝,𝑖)  

 

where 𝑇 is the temperature of a snow layer [K], 𝜌 the density [kg/m
3
], 𝐶𝑝 the specific heat capacity 

[J/(K kg)], and 𝜃 the fractional volumetric of each component. The subscripts 𝑎, 𝑤, 𝑖 and represent 

each component of the snowpack: air, water, and ice. 

 

Calonne et al. (2011) conducted three-dimensional numerical computations of snow 

conductivity through the air and ice phases. They developed an empirical relationship between the 

thermal conductivity and the dry snow density: 

 

𝜆 = 2.5x10−6 𝜌𝑑𝑠
2 − 1.23x10−4𝜌𝑑𝑠 + 0.024   Eq. 12 
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NUMERICAL MODEL DESIGN 

A two-dimensional numerical snow model based on the snow physics presented above was 

developed to solve for the heat and mass fluxes within a two-dimensional heterogeneous, layered, 

subfreezing snowpack. To solve for the partial differential equations, an explicit finite-volume 

scheme was used over an orthogonal structured mesh (Fig. 5). This method considers each 

numerical cell as a control volume, in which the conservation equations are solved. This approach 

is commonly applied in computational fluid dynamics models, as it is inherently conservative. 

Boundary and initial conditions 

Neumann boundary conditions were applied at the upper and left-hand boundaries for the mass 

and heat equations. At the upper boundary, a constant heat flux ( nQ  in Eq. 1) was applied as 

boundary condition for the heat equation. This flux is then used to estimate the infiltration rate 

utilized as upper boundary condition for the mass flow equation. The left-hand boundary condition 

is a no-flow condition, whereas the lower and right-hand boundary conditions are set as free 

boundary conditions,  i.e. water was allowed to drain through these two boundaries by gravity 

flow. 

 

The snowpack and its properties were initialized before running the model. These data include 

the snowpack slope angle (𝛾 in Fig. 5), the snowpack layering system and the mean layer 

properties – mean porosities, water contents, mean optical grain sizes, and temperatures. A 

random lateral perturbation was added to each snow layer density and optical grain size. This 

perturbation is less or equal to 1% of the mean density and optical grain size values. Also, a new 

water entry pressure was used for dry snow. 

Model assumptions 

Water and energy flows within a layered, heterogeneous, subfreezing snowpack are very 

complex physical processes. Therefore, due to the lack of complete understanding of the physics 

of these processes, it is necessary to make assumptions while developing a numerical snow model. 

The assumptions made in this model also indicate current knowledge and how this limits snow 

melt modelling of water flow through snow. These assumptions are: 

1.  The change of grain size due to temperature gradient and presence of liquid water is 

not simulated. 

2.  The irreducible water content is assumed constant for the whole snowpack and does 

not depend on the snow properties. 

3.  Thermal convection, condensation, and sublimation within the snowpack are not 

simulated. 

4.  Heat conduction dominates the heat transfers. 

5.  Freezing point depression effects on snow grains is neglected. 

6.  The lateral heterogeneities in snow grain size and density are randomly distributed 

over space. 

7.  The water entry pressure for dry snow is function only of snow grain size. 

8.  Temperature, density, and water content are computed at the centre point of each cell 

and are assumed homogeneous within the cell. 
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MODEL APPLICATIONS 

A first model simulation of water and heat flow through a subfreezing, heterogeneous, layered 

snowpack is demonstrated. The snowpack was divided into four horizontal snow layers (Table 2, 

Fig. 6). The third layer (from the bottom of the snowpack) is an ice layer with a higher density 

than the other layers. Under natural conditions, flowing liquid water accumulates over this layer 

and preferential flow paths were observed to form below a saturated horizontal layer (Marsh and 

Woo, 1984a). 

 

Table 1 summarizes the parameters and inputs used in the model as initial and boundary 

conditions, and Table 2 shows the snow layering properties. The values used for the mean optical 

grain sizes in Table 2 were computed from the average specific surface areas measured by 

Montpetit et al. (2012) for different types of snow. 

 

The simulation was run until the snowpack completely melted. Figures 7 and 8 show the water 

content within the snow matrix layers after 2 h 45 min and 4 h 10 min of melt, respectively. It can 

be observed that liquid water accumulates above the ice layer (Fig.7). Then, as liquid water 

accumulates above this layer, preferential flows occur where the grain size in the ice layer is 

smaller due to the perturbation implemented (Fig. 8) (cf. section Implementation of snow 

heterogeneities). 

 

 

Figure 6. Initial density in each snow layers 

 

 

Figure 5. Mesh used to represent a layered sloping snowpack 



11 

 

Table 1. Inputs used for the simulation 

Horizontal length of snowpack 2 m 

Snow depth 1 m 

Number of horizontal layers 30 

Number of vertical layers 10 

Ground slope angle 0 

Temperature at the interface snow-soil 0
o
C 

Energy at the surface 500 W/m
2
 

Irreducible water content 0.02 

 

 

 

Table 2. Snow matrix properties 

 Type of snow Thickness 

[m] 

Temperature 

[
o
C] 

Density 

[kg/m
3
] 

Optical grain 

diameter 

[mm] 

 

Layer 1 

(bottom) 

 

Coarse depth 

hoar 

 

0.3 

 

-2 

 

350 

 

0.5 

Layer 2 Dense 

rounded snow  

0.3 -2 300 0.3 

Layer 3 Ice layer 0.1 -2 450 0.7 

Layer 4 Fresh snow 0.3 -2 300 0.3 

 

 

 

Figure 7. Water content, density and temperature distributions in the snowpack after 2 h 45 min of melt 
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Figure 8. Water content, density and temperature distributions in the snowpack after 4 h 10 min of melt 

A second model application of water flow through a sloping snowpack is also demonstrated. 

The same initial conditions are applied as before, but the snowpack is now tilted by 5
o
. Figures 9 

and 10 show the water content in the sloping snowpack after 1 h 45 min and 1 h 50 min of melt, 

respectively. It is observed that preferential flows form in the downhill section of the snowpack 

(Fig. 9) as higher water content occurs in this area due to lateral flows above the ice layer. After 

the formation of preferential flow paths, liquid water flows laterally (Fig. 10). 

 

Figure 9. Water content in a sloping snowpack after 1 h 45 min of melt 

 

Figure 10. Water content in a sloping snowpack after 1 h 50 min of melt 
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CONCLUSIONS 

A first attempt to model mass and energy flows through a subfreezing, layered, sloping 

snowpack with preferential flow path formation has been demonstrated. Two parameters have 

been introduced and explored for their role in triggering the formation of preferential flows – a 

water entry pressure for dry snow and a perturbation in snow grain size and density to simulate 

lateral heterogeneities in their properties. In the model applications presented here, the spatial 

distributions of the perturbations were random. Therefore, further work should be carried to 

establish relationships between these parameters and snow matrix properties from field 

observations.  

 

This two-dimensional snow model needs to be validated against in-situ data. A field study is 

being designed to validate each physical process simulated by the model. The development of this 

numerical model raises questions on water flow through snow and numerical snow modelling: 

1.  Does the irreducible water content depend on snow properties? 

2.  How should the hydraulic conductivity and thermal conductivity be numerically 

computed at the interface of two numerical nodes? 

3.  How should grain size and density perturbations be represented? 

4.  How should the water entry pressure for dry snow be related to snow density? 

5.  Does all the available liquid water that can refreeze ( maxm ) do so during a numerical 

time step (Illangasekare et al., 1990)? 

6.  Is the flow through preferential flow paths laminar? Does Darcy's law always apply? 

7.  Can the equation used for the thermal conductivity in a dry snowpack (Eq. 12) be used 

when liquid water content is present within the snowpack? 

8.  Does liquid water refreeze at 0
o
C or is there a freezing point depression that depends 

on snow properties and surface tension between ice and liquid water? 
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